898 research outputs found

    Unstructured spline spaces for isogeometric analysis based on spline manifolds

    Full text link
    Based on spline manifolds we introduce and study a mathematical framework for analysis-suitable unstructured B-spline spaces. In this setting the parameter domain has a manifold structure, which allows for the definition of function spaces that have a tensor-product structure locally, but not globally. This includes configurations such as B-splines over multi-patch domains with extraordinary points, analysis-suitable unstructured T-splines, or more general constructions. Within this framework, we generalize the concept of dual-compatible B-splines, which was originally developed for structured T-splines. This allows us to prove the key properties that are needed for isogeometric analysis, such as linear independence and optimal approximation properties for hh-refined meshes

    On construction and (non)existence of c-(almost) perfect nonlinear functions

    Get PDF
    Functions with low differential uniformity have relevant applications in cryptography. Recently, functions with low c-differential uniformity attracted lots of attention. In particular, so-called APcN and PcN functions (generalization of APN and PN functions) have been investigated. Here, we provide a characterization of such functions via quadratic polynomials as well as non-existence results.publishedVersio

    On construction and (non)existence of cc-(almost) perfect nonlinear functions

    Full text link
    Functions with low differential uniformity have relevant applications in cryptography. Recently, functions with low cc-differential uniformity attracted lots of attention. In particular, so-called APcN and PcN functions (generalization of APN and PN functions) have been investigated. Here, we provide a characterization of such functions via quadratic polynomials as well as non-existence results

    On Triangular Splines:CAD and Quadrature

    Get PDF

    On Triangular Splines:CAD and Quadrature

    Get PDF

    On Triangular Splines:CAD and Quadrature

    Get PDF

    Unexpected Stein fillings, rational surface singularities, and plane curve arrangements

    Full text link
    We compare Stein fillings and Milnor fibers for rational surface singularities with reduced fundamental cycle. Deformation theory for this class of singularities was studied by de Jong-van Straten in [dJvS98]; they associated a germ of a singular plane curve to each singularity and described Milnor fibers via deformations of this singular curve. We consider links of surface singularities, equipped with their canonical contact structures, and develop a symplectic analog of de Jong-van Straten's construction. Using planar open books and Lefschetz fibrations, we describe all Stein fillings of the links via certain arrangements of symplectic disks, related by a homotopy to the plane curve germ of the singularity. As a consequence, we show that many rational singularities in this class admit Stein fillings that are not strongly diffeomorphic to any Milnor fibers. This contrasts with previously known cases, such as simple and quotient surface singularities, where Milnor fibers are known to give rise to all Stein fillings. On the other hand, we show that if for a singularity with reduced fundamental cycle, the self-intersection of each exceptional curve is at most -5 in the minimal resolution, then the link has a unique Stein filling (given by a Milnor fiber).Comment: 70 pages, 29 figures, additions to v2 are Theorem 1.3 and its corresponding discussion in 4.3, along with added references, v3 updated Remark 4.

    Analysis, classification and construction of optimal cryptographic Boolean functions

    Get PDF
    Modern cryptography is deeply founded on mathematical theory and vectorial Boolean functions play an important role in it. In this context, some cryptographic properties of Boolean functions are defined. In simple terms, these properties evaluate the quality of the cryptographic algorithm in which the functions are implemented. One cryptographic property is the differential uniformity, introduced by Nyberg in 1993. This property is related to the differential attack, introduced by Biham and Shamir in 1990. The corresponding optimal functions are called Almost Perfect Nonlinear functions, shortly APN. APN functions have been constructed, studied and classified up to equivalence relations. Very important is their classification in infinite families, i.e. constructing APN functions that are defined for infinitely many dimensions. In spite of an intensive study of these maps, many fundamental problems related to APN functions are still open and relatively few infinite families are known so far. In this thesis we present some constructions of APN functions and study some of their properties. Specifically, we consider a known construction, L1(x^3)+L2(x^9) with L1 and L2 linear maps, and we introduce two new constructions, the isotopic shift and the generalised isotopic shift. In particular, using the two isotopic shift constructing techniques, in dimensions 8 and 9 we obtain new APN functions and we cover many unclassified cases of APN maps. Here new stands for inequivalent (in respect to the so-called CCZ-equivalence) to already known ones. Afterwards, we study two infinite families of APN functions and their generalisations. We show that all these families are equivalent to each other and they are included in another known family. For many years it was not known whether all the constructed infinite families of APN maps were pairwise inequivalent. With our work, we reduce the list to those inequivalent to each other. Furthermore, we consider optimal functions with respect to the differential uniformity in fields of odd characteristic. These functions, called planar, have been valuable for the construction of new commutative semifields. Planar functions present often a close connection with APN maps. Indeed, the idea behind the isotopic shift construction comes from the study of isotopic equivalence, which is defined for quadratic planar functions. We completely characterise the mentioned equivalence by means of the isotopic shift and the extended affine equivalence. We show that the isotopic shift construction leads also to inequivalent planar functions and we analyse some particular cases of this construction. Finally, we study another cryptographic property, the boomerang uniformity, introduced by Cid et al. in 2018. This property is related to the boomerang attack, presented by Wagner in 1999. Here, we study the boomerang uniformity for some known classes of permutation polynomials.Doktorgradsavhandlin
    • …
    corecore