2,821 research outputs found

    Linear time Constructions of some dd-Restriction Problems

    Full text link
    We give new linear time globally explicit constructions for perfect hash families, cover-free families and separating hash functions

    Balanced Families of Perfect Hash Functions and Their Applications

    Full text link
    The construction of perfect hash functions is a well-studied topic. In this paper, this concept is generalized with the following definition. We say that a family of functions from [n][n] to [k][k] is a δ\delta-balanced (n,k)(n,k)-family of perfect hash functions if for every S[n]S \subseteq [n], S=k|S|=k, the number of functions that are 1-1 on SS is between T/δT/\delta and δT\delta T for some constant T>0T>0. The standard definition of a family of perfect hash functions requires that there will be at least one function that is 1-1 on SS, for each SS of size kk. In the new notion of balanced families, we require the number of 1-1 functions to be almost the same (taking δ\delta to be close to 1) for every such SS. Our main result is that for any constant δ>1\delta > 1, a δ\delta-balanced (n,k)(n,k)-family of perfect hash functions of size 2O(kloglogk)logn2^{O(k \log \log k)} \log n can be constructed in time 2O(kloglogk)nlogn2^{O(k \log \log k)} n \log n. Using the technique of color-coding we can apply our explicit constructions to devise approximation algorithms for various counting problems in graphs. In particular, we exhibit a deterministic polynomial time algorithm for approximating both the number of simple paths of length kk and the number of simple cycles of size kk for any kO(lognlogloglogn)k \leq O(\frac{\log n}{\log \log \log n}) in a graph with nn vertices. The approximation is up to any fixed desirable relative error

    Variations on Classical and Quantum Extractors

    Get PDF
    Many constructions of randomness extractors are known to work in the presence of quantum side information, but there also exist extractors which do not [Gavinsky {\it et al.}, STOC'07]. Here we find that spectral extractors ψ\psi with a bound on the second largest eigenvalue λ2(ψψ)\lambda_{2}(\psi^{\dagger}\circ\psi) are quantum-proof. We then discuss fully quantum extractors and call constructions that also work in the presence of quantum correlations decoupling. As in the classical case we show that spectral extractors are decoupling. The drawback of classical and quantum spectral extractors is that they always have a long seed, whereas there exist classical extractors with exponentially smaller seed size. For the quantum case, we show that there exists an extractor with extremely short seed size d=O(log(1/ϵ))d=O(\log(1/\epsilon)), where ϵ>0\epsilon>0 denotes the quality of the randomness. In contrast to the classical case this is independent of the input size and min-entropy and matches the simple lower bound dlog(1/ϵ)d\geq\log(1/\epsilon).Comment: 7 pages, slightly enhanced IEEE ISIT submission including all the proof

    Perfect Hash Families: The Generalization to Higher Indices

    Get PDF
    Perfect hash families are often represented as combinatorial arrays encoding partitions of kitems into v classes, so that every t or fewer of the items are completely separated by at least a specified number of chosen partitions. This specified number is the index of the hash family. The case when each t-set must be separated at least once has been extensively researched; they arise in diverse applications, both directly and as fundamental ingredients in a column replacement strategy for a variety of combinatorial arrays. In this paper, construction techniques and algorithmic methods for constructing perfect hash families are surveyed, in order to explore extensions to the situation when each t-set must be separated by more than one partition.https://digitalcommons.usmalibrary.org/books/1029/thumbnail.jp
    corecore