22 research outputs found

    Junos OS Security Configuration Guide

    Get PDF
    This preface provides the following guidelines for using the Junos OS Security Configuration Guide: • J Series and SRX Series Documentation and Release Notes on page xli • Objectives on page xlii • Audience on page xlii • Supported Routing Platforms on page xlii • Document Conventions on page xlii • Documentation Feedback on page xliv • Requesting Technical Support on page xliv Juniper Networks supports a technical book program to publish books by Juniper Networks engineers and subject matter experts with book publishers around the world. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration using the Junos operating system (Junos OS) and Juniper Networks devices. In addition, the Juniper Networks Technical Library, published in conjunction with O'Reilly Media, explores improving network security, reliability, and availability using Junos OS configuration techniques. All the books are for sale at technical bookstores and book outlets around the world. The current list can be viewed at http://www.juniper.net/books .Junos OS for SRX Series Services Gateways integrates the world-class network security and routing capabilities of Juniper Networks. Junos OS includes a wide range of packet-based filtering, class-of-service (CoS) classifiers, and traffic-shaping features as well as a rich, extensive set of flow-based security features including policies, screens, network address translation (NAT), and other flow-based services. Traffic that enters and exits services gateway is processed according to features you configure, such as packet filters, security policies, and screens. For example, the software can determine: • Whether the packet is allowed into the device • Which firewall screens to apply to the packet • The route the packet takes to reach its destination • Which CoS to apply to the packet, if any • Whether to apply NAT to translate the packet’s IP address • Whether the packet requires an Application Layer Gateway (ALG

    Routing Protocols in Modern IP Networks

    Get PDF
    Τα σύγχρονα IP δίκτυα συνεχώς εξελίσσονται και μεγαλώνουν. Ο αυξανόμενος αριθμός των όλο και περισσότερο ο διασυνδεδεμένων "έξυπνων" συσκευών, υποχρεώνει τους μηχανικούς δικτύων να πρέπει να διαχειριστούν ποικίλα δίκτυα με εκατοντάδες ή χιλιάδες διασυνδεμένες συσκευές. Η δρομολόγηση του IP πρωτοκόλλου είναι ο συνδετικός κρίκος μεταξύ όλων αυτών των δικτύων. Σκοπός της παρούσας πτυχιακής εργασίας είναι να αποτελέσει ένα εργαλείο αναφοράς των πρωτόκολλων δρομολόγησης, για σπουδαστές και μηχανικούς, των οποίων κύρια δραστηριότητα είναι η διαχείριση και η εποπτεία τεχνολογιών και πρωτοκόλλων δρομολόγησης σε IP δίκτυα.Modern IP networks are continuously evolving and growing. The fact that more and more devices become “smart” and have the ability to connect to an IP network makes network engineers come across a variety of different network topologies, on a daily basis, interconnecting hundreds or thousands of different subnets. IP routing is the key link between these subnets. The purpose of this thesis is to become a reference tool for students or engineers whose main responsibility is the management or administration of core routing technologies

    Internet Protocol version 6 and the future of home networking

    Get PDF
    Home networking will be more of a necessity in the future than it is today. The homes of the future will make our lives easier in many ways. As microprocessors become less expensive and require less power they will be implanted into many of the common household items used everyday. Appliances and components will evolve into smart devices that communicate with each other. Connecting these devices will become more important as devices incorporate new technologies. It will be necessary to build a network that can handle the needs of this type of computing environment. The home networks of the future will require many of the same features that can be found in today\u27s corporate networks. However, there will be four issues that will determine the level of success of implementing home networks. The first issue is the increase in volume of the devices accessing and utilizing the Internet. Security will be a high priority for homeowners, since the data that accumulates and circulates in and out of the home is sensitive and personal. The third critical issue is ease of use, because the average homeowner does not have the skills necessary to configure and maintain networks. The last issue that will be important in the home is the increased need for bandwidth and the ability to accommodate all types of data traffic. There is no doubt that the Internet Protocol will be important in future home networks. Some proponents of IP say IP over everything The trend has been finding new ways of making IP the answer to all types of voice and data communications. Initially the Internet Protocol was designed for a specific application. Over time, IPv4 has been able to successfully adapt to the changing needs and demands of the Internet. At one point in the early 90\u27s, it was feared that IPv4 would not be able to meet the future needs. As a result, The Internet Engineering Task Force (IETF) developed a next generation Internet Protocol, referred to as Internet Protocol version 6. In the meantime, new fixes to old IPv4 problems have been temporarily halted. The implementation of IPv6 has been extremely slow since the imminent danger of declining address space has been temporarily addressed. IP version 6 has many new features built into the protocol that will streamline and enhance many aspects of the network, but these features alone may not be enough to cause the displacement of the massive infrastructure of IPv4. Will IPv6 be better at handling the demands of the home networks of the future, or will the additions and updates for IPv4 be sufficient? What are some of the resolutions that are being developed or are already implemented for the key issues in home networks- the increasing number of devices, security, ease of use and data flow

    Segurança e privacidade em terminologia de rede

    Get PDF
    Security and Privacy are now at the forefront of modern concerns, and drive a significant part of the debate on digital society. One particular aspect that holds significant bearing in these two topics is the naming of resources in the network, because it directly impacts how networks work, but also affects how security mechanisms are implemented and what are the privacy implications of metadata disclosure. This issue is further exacerbated by interoperability mechanisms that imply this information is increasingly available regardless of the intended scope. This work focuses on the implications of naming with regards to security and privacy in namespaces used in network protocols. In particular on the imple- mentation of solutions that provide additional security through naming policies or increase privacy. To achieve this, different techniques are used to either embed security information in existing namespaces or to minimise privacy ex- posure. The former allows bootstraping secure transport protocols on top of insecure discovery protocols, while the later introduces privacy policies as part of name assignment and resolution. The main vehicle for implementation of these solutions are general purpose protocols and services, however there is a strong parallel with ongoing re- search topics that leverage name resolution systems for interoperability such as the Internet of Things (IoT) and Information Centric Networks (ICN), where these approaches are also applicable.Segurança e Privacidade são dois topicos que marcam a agenda na discus- são sobre a sociedade digital. Um aspecto particularmente subtil nesta dis- cussão é a forma como atribuímos nomes a recursos na rede, uma escolha com consequências práticas no funcionamento dos diferentes protocols de rede, na forma como se implementam diferentes mecanismos de segurança e na privacidade das várias partes envolvidas. Este problema torna-se ainda mais significativo quando se considera que, para promover a interoperabili- dade entre diferentes redes, mecanismos autónomos tornam esta informação acessível em contextos que vão para lá do que era pretendido. Esta tese foca-se nas consequências de diferentes políticas de atribuição de nomes no contexto de diferentes protocols de rede, para efeitos de segurança e privacidade. Com base no estudo deste problema, são propostas soluções que, através de diferentes políticas de atribuição de nomes, permitem introdu- zir mecanismos de segurança adicionais ou mitigar problemas de privacidade em diferentes protocolos. Isto resulta na implementação de mecanismos de segurança sobre protocolos de descoberta inseguros, assim como na intro- dução de mecanismos de atribuiçao e resolução de nomes que se focam na protecçao da privacidade. O principal veículo para a implementação destas soluções é através de ser- viços e protocolos de rede de uso geral. No entanto, a aplicabilidade destas soluções extende-se também a outros tópicos de investigação que recorrem a mecanismos de resolução de nomes para implementar soluções de intero- perabilidade, nomedamente a Internet das Coisas (IoT) e redes centradas na informação (ICN).Programa Doutoral em Informátic

    Junos Pulse Secure Access Service Administration Guide

    Get PDF
    This guide describes basic configuration procedures for Juniper Networks Secure Access Secure Access Service. This document was formerly titled Secure Access Administration Guide. This document is now part of the Junos Pulse documentation set. This guide is designed for network administrators who are configuring and maintaining a Juniper Networks Secure Access Service device. To use this guide, you need a broad understanding of networks in general and the Internet in particular, networking principles, and network configuration. Any detailed discussion of these concepts is beyond the scope of this guide.The Juniper Networks Secure Access Service enable you to give employees, partners, and customers secure and controlled access to your corporate data and applications including file servers, Web servers, native messaging and e-mail clients, hosted servers, and more from outside your trusted network using just a Web browser. Secure Access Service provide robust security by intermediating the data that flows between external users and your company’s internal resources. Users gain authenticated access to authorized resources through an extranet session hosted by the appliance. During intermediation, Secure Access Service receives secure requests from the external, authenticated users and then makes requests to the internal resources on behalf of those users. By intermediating content in this way, Secure Access Service eliminates the need to deploy extranet toolkits in a traditional DMZ or provision a remote access VPN for employees. To access the intuitive Secure Access Service home page, your employees, partners, and customers need only a Web browser that supports SSL and an Internet connection. This page provides the window from which your users can securely browse Web or file servers, use HTML-enabled enterprise applications, start the client/server application proxy, begin a Windows, Citrix, or Telnet/SSH terminal session, access corporate e-mail servers, start a secured layer 3 tunnel, or schedule or attend a secure online meeting

    QoS Abstraction Layer in 4G Access Networks

    Get PDF
    Tese de Mestrado. Redes e Serviços de Comunicação. Faculdade de Engenharia. Universidade do Porto. 200

    D3.6.1: Cookbook for IPv6 Renumbering in SOHO and Backbone Networks

    Get PDF
    In this text we present the results of a set of experiments that are designed to be a first step in the process of analysing how effective network renumbering procedures may be in the context of IPv6. An IPv6 site will need to get provider assigned (PA) address space from its upstream ISP. Because provider independent (PI) address space is not available for IPv6, a site wishing to change provider will need to renumber from its old network prefix to the new one. We look at the scenarios, issues and enablers for such renumbering, and present results and initial conclusions and recommendations in the context of SOHO and backbone networking. A subsequent deliverable (D3.6.2) will refine these findings, adding additional results and context from enterprise and ISP renumbering scenarios

    Resilient and Scalable Forwarding for Software-Defined Networks with P4-Programmable Switches

    Get PDF
    Traditional networking devices support only fixed features and limited configurability. Network softwarization leverages programmable software and hardware platforms to remove those limitations. In this context the concept of programmable data planes allows directly to program the packet processing pipeline of networking devices and create custom control plane algorithms. This flexibility enables the design of novel networking mechanisms where the status quo struggles to meet high demands of next-generation networks like 5G, Internet of Things, cloud computing, and industry 4.0. P4 is the most popular technology to implement programmable data planes. However, programmable data planes, and in particular, the P4 technology, emerged only recently. Thus, P4 support for some well-established networking concepts is still lacking and several issues remain unsolved due to the different characteristics of programmable data planes in comparison to traditional networking. The research of this thesis focuses on two open issues of programmable data planes. First, it develops resilient and efficient forwarding mechanisms for the P4 data plane as there are no satisfying state of the art best practices yet. Second, it enables BIER in high-performance P4 data planes. BIER is a novel, scalable, and efficient transport mechanism for IP multicast traffic which has only very limited support of high-performance forwarding platforms yet. The main results of this thesis are published as 8 peer-reviewed and one post-publication peer-reviewed publication. The results cover the development of suitable resilience mechanisms for P4 data planes, the development and implementation of resilient BIER forwarding in P4, and the extensive evaluations of all developed and implemented mechanisms. Furthermore, the results contain a comprehensive P4 literature study. Two more peer-reviewed papers contain additional content that is not directly related to the main results. They implement congestion avoidance mechanisms in P4 and develop a scheduling concept to find cost-optimized load schedules based on day-ahead forecasts

    An Introduction to Computer Networks

    Get PDF
    An open textbook for undergraduate and graduate courses on computer networks
    corecore