331 research outputs found

    Efficient duration and hierarchical modeling for human activity recognition

    Get PDF
    A challenge in building pervasive and smart spaces is to learn and recognize human activities of daily living (ADLs). In this paper, we address this problem and argue that in dealing with ADLs, it is beneficial to exploit both their typical duration patterns and inherent hierarchical structures. We exploit efficient duration modeling using the novel Coxian distribution to form the Coxian hidden semi-Markov model (CxHSMM) and apply it to the problem of learning and recognizing ADLs with complex temporal dependencies.The Coxian duration model has several advantages over existing duration parameterization using multinomial or exponential family distributions, including its denseness in the space of non negative distributions, low number of parameters, computational efficiency and the existence of closed-form estimation solutions. Further we combine both hierarchical and duration extensions of the hidden Markov model (HMM) to form the novel switching hidden semi-Markov model (SHSMM), and empirically compare its performance with existing models. The model can learn what an occupant normally does during the day from unsegmented training data and then perform online activity classification, segmentation and abnormality detection. Experimental results show that Coxian modeling outperforms a range of baseline models for the task of activity segmentation. We also achieve arecognition accuracy competitive to the current state-of-the-art multinomial duration model, while gaining a significant reduction in computation. Furthermore, cross-validation model selection on the number of phases K in the Coxian indicates that only a small Kis required to achieve the optimal performance. Finally, our models are further tested in a more challenging setting in which the tracking is often lost and the activities considerably overlap. With a small amount of labels supplied during training in a partially supervised learning mode, our models are again able to deliver reliable performance, again with a small number of phases, making our proposed framework an attractive choice for activity modeling

    Activity recognition and abnormality detection with the switching hidden semi-Markov model

    Get PDF
    This paper addresses the problem of learning and recognizing human activities of daily living (ADL), which is an important research issue in building a pervasive and smart environment. In dealing with ADL, we argue that it is beneficial to exploit both the inherent hierarchical organization of the activities and their typical duration. To this end, we introduce the Switching Hidden Semi-Markov Model (S-HSMM), a two-layered extension of the hidden semi-Markov model (HSMM) for the modeling task. Activities are modeled in the S-HSMM in two ways: the bottom layer represents atomic activities and their duration using HSMMs; the top layer represents a sequence of high-level activities where each high-level activity is made of a sequence of atomic activities. We consider two methods for modeling duration: the classic explicit duration model using multinomial distribution, and the novel use of the discrete Coxian distribution. In addition, we propose an effective scheme to detect abnormality without the need for training on abnormal data. Experimental results show that the S-HSMM performs better than existing models including the flat HSMM and the hierarchical hidden Markov model in both classification and abnormality detection tasks, alleviating the need for presegmented training data. Furthermore, our discrete Coxian duration model yields better computation time and generalization error than the classic explicit duration model

    A comparative study of pose representation and dynamics modelling for online motion quality assessment

    Get PDF
    © 2015 The Authors. Published by Elsevier Inc. Quantitative assessment of the quality of motion is increasingly in demand by clinicians in healthcare and rehabilitation monitoring of patients. We study and compare the performances of different pose representations and HMM models of dynamics of movement for online quality assessment of human motion. In a general sense, our assessment framework builds a model of normal human motion from skeleton-based samples of healthy individuals. It encapsulates the dynamics of human body pose using robust manifold representation and a first-order Markovian assumption. We then assess deviations from it via a continuous online measure. We compare different feature representations, reduced dimensionality spaces, and HMM models on motions typically tested in clinical settings, such as gait on stairs and flat surfaces, and transitions between sitting and standing. Our dataset is manually labelled by a qualified physiotherapist. The continuous-state HMM, combined with pose representation based on body-joints' location, outperforms standard discrete-state HMM approaches and other skeleton-based features in detecting gait abnormalities, as well as assessing deviations from the motion model on a frame-by-frame basis

    Efficient Coxian duration modelling for activity recognition in smart environment with the hidden semi-Markov model

    Full text link
    In this paper, we exploit the discrete Coxian distribution and propose a novel form of stochastic model, termed as the Coxian hidden semi-Makov model (Cox-HSMM), and apply it to the task of recognising activities of daily living (ADLs) in a smart house environment. The use of the Coxian has several advantages over traditional parameterization (e.g. multinomial or continuous distributions) including the low number of free parameters needed, its computational efficiency, and the existing of closed-form solution. To further enrich the model in real-world applications, we also address the problem of handling missing observation for the proposed Cox-HSMM. In the domain of ADLs, we emphasize the importance of the duration information and model it via the Cox-HSMM. Our experimental results have shown the superiority of the Cox-HSMM in all cases when compared with the standard HMM. Our results have further shown that outstanding recognition accuracy can be achieved with relatively low number of phases required in the Coxian, thus making the Cox-HSMM particularly suitable in recognizing ADLs whose movement trajectories are typically very long in nature.<br /

    Human behavior recognition with generic exponential family duration modeling in the hidden semi-Markov model

    Full text link
    The ability to learn and recognize human activities of daily living (ADLs) is important in building pervasive and smart environments. In this paper, we tackle this problem using the hidden semi-Markov model. We discuss the state-of-the-art duration modeling choices and then address a large class of exponential family distributions to model state durations. Inference and learning are efficiently addressed by providing a graphical representation for the model in terms of a dynamic Bayesian network (DBN). We investigate both discrete and continuous distributions from the exponential family (Poisson and Inverse Gaussian respectively) for the problem of learning and recognizing ADLs. A full comparison between the exponential family duration models and other existing models including the traditional multinomial and the new Coxian are also presented. Our work thus completes a thorough investigation into the aspect of duration modeling and its application to human activities recognition in a real-world smart home surveillance scenario.<br /

    Efficient duration modelling in the hierarchical hidden semi-Markov models and their applications

    Get PDF
    Modeling patterns in temporal data has arisen as an important problem in engineering and science. This has led to the popularity of several dynamic models, in particular the renowned hidden Markov model (HMM) [Rabiner, 1989]. Despite its widespread success in many cases, the standard HMM often fails to model more complex data whose elements are correlated hierarchically or over a long period. Such problems are, however, frequently encountered in practice. Existing efforts to overcome this weakness often address either one of these two aspects separately, mainly due to computational intractability. Motivated by this modeling challenge in many real world problems, in particular, for video surveillance and segmentation, this thesis aims to develop tractable probabilistic models that can jointly model duration and hierarchical information in a unified framework. We believe that jointly exploiting statistical strength from both properties will lead to more accurate and robust models for the needed task. To tackle the modeling aspect, we base our work on an intersection between dynamic graphical models and statistics of lifetime modeling. Realizing that the key bottleneck found in the existing works lies in the choice of the distribution for a state, we have successfully integrated the discrete Coxian distribution [Cox, 1955], a special class of phase-type distributions, into the HMM to form a novel and powerful stochastic model termed as the Coxian Hidden Semi-Markov Model (CxHSMM). We show that this model can still be expressed as a dynamic Bayesian network, and inference and learning can be derived analytically.Most importantly, it has four superior features over existing semi-Markov modelling: the parameter space is compact, computation is fast (almost the same as the HMM), close-formed estimation can be derived, and the Coxian is flexible enough to approximate a large class of distributions. Next, we exploit hierarchical decomposition in the data by borrowing analogy from the hierarchical hidden Markov model in [Fine et al., 1998, Bui et al., 2004] and introduce a new type of shallow structured graphical model that combines both duration and hierarchical modelling into a unified framework, termed the Coxian Switching Hidden Semi-Markov Models (CxSHSMM). The top layer is a Markov sequence of switching variables, while the bottom layer is a sequence of concatenated CxHSMMs whose parameters are determined by the switching variable at the top. Again, we provide a thorough analysis along with inference and learning machinery. We also show that semi-Markov models with arbitrary depth structure can easily be developed. In all cases we further address two practical issues: missing observations to unstable tracking and the use of partially labelled data to improve training accuracy. Motivated by real-world problems, our application contribution is a framework to recognize complex activities of daily livings (ADLs) and detect anomalies to provide better intelligent caring services for the elderly.Coarser activities with self duration distributions are represented using the CxHSMM. Complex activities are made of a sequence of coarser activities and represented at the top level in the CxSHSMM. Intensive experiments are conducted to evaluate our solutions against existing methods. In many cases, the superiority of the joint modeling and the Coxian parameterization over traditional methods is confirmed. The robustness of our proposed models is further demonstrated in a series of more challenging experiments, in which the tracking is often lost and activities considerably overlap. Our final contribution is an application of the switching Coxian model to segment education-oriented videos into coherent topical units. Our results again demonstrate such segmentation processes can benefit greatly from the joint modeling of duration and hierarchy

    Hidden Markov Model with Binned Duration and Its Application

    Get PDF
    Hidden Markov models (HMM) have been widely used in various applications such as speech processing and bioinformatics. However, the standard hidden Markov model requires state occupancy durations to be geometrically distributed, which can be inappropriate in some real-world applications where the distributions on state intervals deviate signi cantly from the geometric distribution, such as multi-modal distributions and heavy-tailed distributions. The hidden Markov model with duration (HMMD) avoids this limitation by explicitly incor- porating the appropriate state duration distribution, at the price of signi cant computational expense. As a result, the applications of HMMD are still quited limited. In this work, we present a new algorithm - Hidden Markov Model with Binned Duration (HMMBD), whose result shows no loss of accuracy compared to the HMMD decoding performance and a com- putational expense that only diers from the much simpler and faster HMM decoding by a constant factor. More precisely, we further improve the computational complexity of HMMD from (TNN +TND) to (TNN +TND ), where TNN stands for the computational com- plexity of the HMM, D is the max duration value allowed and can be very large and D generally could be a small constant value

    Using inactivity to detect unusual behavior

    No full text
    We present a novel method for detecting unusual modes of behavior in video surveillance data, suitable for supporting home-based care of elderly patients. Our approach is based on detecting unusual patterns of inactivity. We first learn a spatial map of normal inactivity for an observedscene, expressed as a two-dimensional mixture of Gaus-sians. The map components are used to construct a HiddenMarkov Model representing normal patterns of behavior. Athreshold model is also inferred, and unusual behavior de-tected by comparing the model likelihoods. Our learning procedures are unsupervised, and yield a highly transparent model of scene activity. We present an evaluation of our pproach, and show that it is effective in detecting unusual bhavior across a range of parameter settings
    • …
    corecore