21,496 research outputs found

    A Quantitative Study of Pure Parallel Processes

    Full text link
    In this paper, we study the interleaving -- or pure merge -- operator that most often characterizes parallelism in concurrency theory. This operator is a principal cause of the so-called combinatorial explosion that makes very hard - at least from the point of view of computational complexity - the analysis of process behaviours e.g. by model-checking. The originality of our approach is to study this combinatorial explosion phenomenon on average, relying on advanced analytic combinatorics techniques. We study various measures that contribute to a better understanding of the process behaviours represented as plane rooted trees: the number of runs (corresponding to the width of the trees), the expected total size of the trees as well as their overall shape. Two practical outcomes of our quantitative study are also presented: (1) a linear-time algorithm to compute the probability of a concurrent run prefix, and (2) an efficient algorithm for uniform random sampling of concurrent runs. These provide interesting responses to the combinatorial explosion problem

    Automated Synthesis of Tableau Calculi

    Full text link
    This paper presents a method for synthesising sound and complete tableau calculi. Given a specification of the formal semantics of a logic, the method generates a set of tableau inference rules that can then be used to reason within the logic. The method guarantees that the generated rules form a calculus which is sound and constructively complete. If the logic can be shown to admit finite filtration with respect to a well-defined first-order semantics then adding a general blocking mechanism provides a terminating tableau calculus. The process of generating tableau rules can be completely automated and produces, together with the blocking mechanism, an automated procedure for generating tableau decision procedures. For illustration we show the workability of the approach for a description logic with transitive roles and propositional intuitionistic logic.Comment: 32 page

    Logic of Non-Monotonic Interactive Proofs (Formal Theory of Temporary Knowledge Transfer)

    Full text link
    We propose a monotonic logic of internalised non-monotonic or instant interactive proofs (LiiP) and reconstruct an existing monotonic logic of internalised monotonic or persistent interactive proofs (LiP) as a minimal conservative extension of LiiP. Instant interactive proofs effect a fragile epistemic impact in their intended communities of peer reviewers that consists in the impermanent induction of the knowledge of their proof goal by means of the knowledge of the proof with the interpreting reviewer: If my peer reviewer knew my proof then she would at least then (in that instant) know that its proof goal is true. Their impact is fragile and their induction of knowledge impermanent in the sense of being the case possibly only at the instant of learning the proof. This accounts for the important possibility of internalising proofs of statements whose truth value can vary, which, as opposed to invariant statements, cannot have persistent proofs. So instant interactive proofs effect a temporary transfer of certain propositional knowledge (knowable ephemeral facts) via the transmission of certain individual knowledge (knowable non-monotonic proofs) in distributed systems of multiple interacting agents.Comment: continuation of arXiv:1201.3667 ; published extended abstract: DOI:10.1007/978-3-642-36039-8_16 ; related to arXiv:1208.591

    A mathematical theory of semantic development in deep neural networks

    Full text link
    An extensive body of empirical research has revealed remarkable regularities in the acquisition, organization, deployment, and neural representation of human semantic knowledge, thereby raising a fundamental conceptual question: what are the theoretical principles governing the ability of neural networks to acquire, organize, and deploy abstract knowledge by integrating across many individual experiences? We address this question by mathematically analyzing the nonlinear dynamics of learning in deep linear networks. We find exact solutions to this learning dynamics that yield a conceptual explanation for the prevalence of many disparate phenomena in semantic cognition, including the hierarchical differentiation of concepts through rapid developmental transitions, the ubiquity of semantic illusions between such transitions, the emergence of item typicality and category coherence as factors controlling the speed of semantic processing, changing patterns of inductive projection over development, and the conservation of semantic similarity in neural representations across species. Thus, surprisingly, our simple neural model qualitatively recapitulates many diverse regularities underlying semantic development, while providing analytic insight into how the statistical structure of an environment can interact with nonlinear deep learning dynamics to give rise to these regularities

    Practical applications of multi-agent systems in electric power systems

    Get PDF
    The transformation of energy networks from passive to active systems requires the embedding of intelligence within the network. One suitable approach to integrating distributed intelligent systems is multi-agent systems technology, where components of functionality run as autonomous agents capable of interaction through messaging. This provides loose coupling between components that can benefit the complex systems envisioned for the smart grid. This paper reviews the key milestones of demonstrated agent systems in the power industry and considers which aspects of agent design must still be addressed for widespread application of agent technology to occur
    corecore