12,866 research outputs found

    A pilot Internet "Value of Health" Panel: recruitment, participation and compliance

    Get PDF
    Objectives To pilot using a panel of members of the public to provide preference data via the Internet Methods A stratified random sample of members of the general public was recruited and familiarised with the standard gamble procedure using an Internet based tool. Health states were perdiodically presented in "sets" corresponding to different conditions, during the study. The following were described: Recruitment (proportion of people approached who were trained); Participation (a) the proportion of people trained who provided any preferences and (b) the proportion of panel members who contributed to each "set" of values; and Compliance (the proportion, per participant, of preference tasks which were completed). The influence of covariates on these outcomes was investigated using univariate and multivariate analyses. Results A panel of 112 people was recruited. 23% of those approached (n = 5,320) responded to the invitation, and 24% of respondents (n = 1,215) were willing to participate (net = 5.5%). However, eventual recruitment rates, following training, were low (2.1% of those approached). Recruitment from areas of high socioeconomic deprivation and among ethnic minority communities was low. Eighteen sets of health state descriptions were considered over 14 months. 74% of panel members carried out at least one valuation task. People from areas of higher socioeconomic deprivation and unmarried people were less likely to participate. An average of 41% of panel members expressed preferences on each set of descriptions. Compliance ranged from 3% to 100%. Conclusion It is feasible to establish a panel of members of the general public to express preferences on a wide range of health state descriptions using the Internet, although differential recruitment and attrition are important challenges. Particular attention to recruitment and retention in areas of high socioeconomic deprivation and among ethnic minority communities is necessary. Nevertheless, the panel approach to preference measurement using the Internet offers the potential to provide specific utility data in a responsive manner for use in economic evaluations and to address some of the outstanding methodological uncertainties in this field

    Changing the focus: worker-centric optimization in human-in-the-loop computations

    Get PDF
    A myriad of emerging applications from simple to complex ones involve human cognizance in the computation loop. Using the wisdom of human workers, researchers have solved a variety of problems, termed as “micro-tasks” such as, captcha recognition, sentiment analysis, image categorization, query processing, as well as “complex tasks” that are often collaborative, such as, classifying craters on planetary surfaces, discovering new galaxies (Galaxyzoo), performing text translation. The current view of “humans-in-the-loop” tends to see humans as machines, robots, or low-level agents used or exploited in the service of broader computation goals. This dissertation is developed to shift the focus back to humans, and study different data analytics problems, by recognizing characteristics of the human workers, and how to incorporate those in a principled fashion inside the computation loop. The first contribution of this dissertation is to propose an optimization framework and a real world system to personalize worker’s behavior by developing a worker model and using that to better understand and estimate task completion time. The framework judiciously frames questions and solicits worker feedback on those to update the worker model. Next, improving workers skills through peer interaction during collaborative task completion is studied. A suite of optimization problems are identified in that context considering collaborativeness between the members as it plays a major role in peer learning. Finally, “diversified” sequence of work sessions for human workers is designed to improve worker satisfaction and engagement while completing tasks

    Role of Time in Leader-Follower Interactions.

    Get PDF
    Research has demonstrated time to be an important variable within an organization at an individual, group and cultural level of analysis (Francis-Smythe & Robertson, 1999; Schriber & Gutek, 1987; Gevers et al, 2006; Rutoski et al, 2007). In fact a number of researchers have called for further work to be done in this domain (Ancona, Goodman, Lawrence, & Tushman, 2001; George & Jones, 2000). In response to this call, this paper will explore the role of time in leadership and management. The importance organizations attach to time is only too clear when organizational economic goals and measures of performance (such as monthly targets, productivity measures) are considered. However, it is somewhat surprising that organizations have a limited capability to understand how time permeates and impacts in everyday work practices. This paper will explore the role of time in leadership by introducing the notion of Temporal Intelligence (TI). TI is a developing concept that represents an individual difference factor in regards to a leader’s temporal practices. Specifically, this paper will present the findings from a qualitative research investigation into the role of time in leader-follower interactions. There is concern within the contemporary research arena that a preponderance of attention is directed towards the outcomes of leadership effectiveness rather than relevant individual characteristics (Gawith & Flaxman, 2007; Judge & Bono, 2000; Rubin et al. 2005). The importance of operationizing leadership effectiveness as a research variable is reflected in the end-goal of this project. At the same time it is also recognised there is a need to identify a leader’s temporally related individual characteristics that may potentially provide a fruitful basis for explaining leadership as a phenomenon and predicting effectiveness; this has clear implications for selection and development processes

    The simultaneous valuation of states from multiple instruments using ranking and VAS data: methods and preliminary results

    Get PDF
    Background: Previous methods of empirical mapping involve using regressions on patient or general population self-report data from datasets involving two or more instruments. This approach relies on overlap in the descriptive systems of the measures, but key dimensions may not be present in both measures. Furthermore this assumes it is appropriate to use different instruments on the same population, which may not be the case for all patient groups. The aim of the study described here is to develop a new method of mapping using general population preferences for hypothetical health states defined by the descriptive systems of different measures. This paper presents a description of the methods used in the study and reports on the results of the valuation study including details about the respondents, feasibility and quality (e.g. response rate, completion and consistency) and descriptive results on VAS and ranking data. The use of these results to estimate mapping functions between instruments will be presented in a companion paper. Methods: The study used interviewer administered versions of ranking and VAS techniques to value 13 health states defined by each of 6 instruments: EQ-5D (generic), SF-6D (generic), HUI2 (generic for children), AQL-5D (asthma specific), OPUS (social care specific), ICECAP (capabilities). Each interview involved 3 ranking and visual analogue scale (VAS) tasks with states from 3 different instruments where each task involves the simultaneous valuation of multiple instruments. The study includes 13 health and well-being states for each instrument (16 for EQ-5D) that reflect a range of health state values according to the published health state values for each instrument and each health state is valued approximately 75-100 times. Results: The sample consists of 499 members of the UK general population with a reasonable spread of background characteristics (response rate=55%). The study achieved a completion rate of 99% for all states included in the rank and rating tasks and 94.8% of respondents have complete VAS responses and 97.2% have complete rank responses. Interviewers reported that it is doubtful for 4.1% of respondents that they understood the tasks, and 29.3% of respondents stated that they found the tasks difficult. The results suggest important differences in the range of mean VAS and mean rank values per state across instruments, for example mean VAS values for the worst state vary across instruments from 0.075 to 0.324. Respondents are able to change the ordering of states between the rank and VAS tasks and 12.0% of respondents have one or more differences in their rank and VAS orderings for every task. Conclusions: This study has demonstrated the feasibility of simultaneously valuing health states from different preference-based instruments. The preliminary analysis of the results presented here provides the basis for a new method of mapping between measures based on general population preferences.preference-based measures of health; quality of life; mapping; visual analogue scale; ranking
    • …
    corecore