3,885 research outputs found

    Cell-based approach for 3D reconstruction from incomplete silhouettes

    Get PDF
    Shape-from-silhouettes is a widely adopted approach to compute accurate 3D reconstructions of people or objects in a multi-camera environment. However, such algorithms are traditionally very sensitive to errors in the silhouettes due to imperfect foreground-background estimation or occluding objects appearing in front of the object of interest. We propose a novel algorithm that is able to still provide high quality reconstruction from incomplete silhouettes. At the core of the method is the partitioning of reconstruction space in cells, i.e. regions with uniform camera and silhouette coverage properties. A set of rules is proposed to iteratively add cells to the reconstruction based on their potential to explain discrepancies between silhouettes in different cameras. Experimental analysis shows significantly improved F1-scores over standard leave-M-out reconstruction techniques

    CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection

    Full text link
    Robust face detection in the wild is one of the ultimate components to support various facial related problems, i.e. unconstrained face recognition, facial periocular recognition, facial landmarking and pose estimation, facial expression recognition, 3D facial model construction, etc. Although the face detection problem has been intensely studied for decades with various commercial applications, it still meets problems in some real-world scenarios due to numerous challenges, e.g. heavy facial occlusions, extremely low resolutions, strong illumination, exceptionally pose variations, image or video compression artifacts, etc. In this paper, we present a face detection approach named Contextual Multi-Scale Region-based Convolution Neural Network (CMS-RCNN) to robustly solve the problems mentioned above. Similar to the region-based CNNs, our proposed network consists of the region proposal component and the region-of-interest (RoI) detection component. However, far apart of that network, there are two main contributions in our proposed network that play a significant role to achieve the state-of-the-art performance in face detection. Firstly, the multi-scale information is grouped both in region proposal and RoI detection to deal with tiny face regions. Secondly, our proposed network allows explicit body contextual reasoning in the network inspired from the intuition of human vision system. The proposed approach is benchmarked on two recent challenging face detection databases, i.e. the WIDER FACE Dataset which contains high degree of variability, as well as the Face Detection Dataset and Benchmark (FDDB). The experimental results show that our proposed approach trained on WIDER FACE Dataset outperforms strong baselines on WIDER FACE Dataset by a large margin, and consistently achieves competitive results on FDDB against the recent state-of-the-art face detection methods
    • …
    corecore