2,041 research outputs found

    An interoceptive predictive coding model of conscious presence

    Get PDF
    We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness

    Diagnostic and prognostic analysis tools for monitoring degradation in aged structures

    Get PDF
    This research addresses the problem of prolonging the life of aged structures of historical value that have already outlived their original designed lives many times. While a lot of research has been carried out in the field of structural monitoring, diagnostics and prognostics for high tech industries, this is not the case for historical aged structures. Currently most maintenance projects for aged structures have focused on the instrumentation and diagnostic techniques required to detect any damage with a certain degree of success. This research project involved the development of diagnostic and prognostic tools to be used for monitoring and predicting the ‘health’ of aged structures. The diagnostic and prognostic tools have been developed for the monitoring of Cutty Sark iron structures as a first application. The concept of canary and parrot sensor devices are developed where canary devices are small, accelerated devices, which will fail according to similar failure mechanisms occurring in an aged structures and parrot devices are designed to fail at the same rate as the structure, thus mimicking the structure. The model-driven prognostic tool uses a Physics-of-Failure (PoF) model to predict remaining life of a structure. It uses a corrosion model based on the decrease in corrosion rate over time to predict remaining life of an aged iron structures. The data-driven diagnostic tool developed uses Mahalanobis Distance analysis to detect anomalies in the behaviour of a structure. Bayesian Network models are then used as a fusion method, integrating remaining life predictions from the model-driven prognostic tool with information of possible anomalies from data-driven diagnostic tool to provide a probability distribution of predicted remaining life. The diagnostics and prognostic tools are validated and tested through demonstration example and experimental tests. This research primarily looks at applying diagnostic and prognostic technologies used in high-tech industries to aged iron structures. In order to achieve this, the model-driven and data-driven techniques commonly used had to be adapted taking into consideration the particular constraints of monitoring and maintaining aged structures. The fusion technique developed is a novel approach for prognostics for aged structures and provides the flexibility often needed for diagnostic and prognostic tools

    Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM modeling good research practices task force working group - 6

    Get PDF
    A model’s purpose is to inform medical decisions and health care resource allocation. Modelers employ quantitative methods to structure the clinical, epidemiological, and economic evidence base and gain qualitative insight to assist decision makers in making better decisions. From a policy perspective, the value of a model-based analysis lies not simply in its ability to generate a precise point estimate for a specific outcome but also in the systematic examination and responsible reporting of uncertainty surrounding this outcome and the ultimate decision being addressed. Different concepts relating to uncertainty in decision modeling are explored. Stochastic (first-order) uncertainty is distinguished from both parameter (second-order) uncertainty and from heterogeneity, with structural uncertainty relating to the model itself forming another level of uncertainty to consider. The article argues that the estimation of point estimates and uncertainty in parameters is part of a single process and explores the link between parameter uncertainty through to decision uncertainty and the relationship to value-of-information analysis. The article also makes extensive recommendations around the reporting of uncertainty, both in terms of deterministic sensitivity analysis techniques and probabilistic methods. Expected value of perfect information is argued to be the most appropriate presentational technique, alongside cost-effectiveness acceptability curves, for representing decision uncertainty from probabilistic analysis

    ARPHA: an FDIR architecture for Autonomous Spacecrafts based on Dynamic Probabilistic Graphical Models

    Get PDF
    This paper introduces a formal architecture for on-board diagnosis, prognosis and recovery called ARPHA. ARPHA is designed as part of the ESA/ESTEC study called VERIFIM (Veri\ufb01cation of Failure Impact by Model checking). The goal is to allow the design of an innovative on-board FDIR process for autonomous systems, able to deal with uncertain system/environment interactions, uncertain dynamic system evolution, partial observability and detection of recovery actions taking into account imminent failures. We show how the model needed by ARPHA can be built through a standard fault analysis phase, \ufb01nally producing an extended version of a fault tree called EDFT; we discuss how EDFT can be adopted as a formal language to represent the needed FDIR knowledge, that can be compiled into a corresponding Dynamic Decision Network to be used for the analysis. We also discuss the software architecture we are implementing following this approach, where on-board FDIR can be implemented by exploiting on-line inference based on the junction tree approach typical of probabilisticgraphical models
    corecore