996 research outputs found

    On next-to-eikonal corrections to threshold resummation for the Drell-Yan and DIS cross sections

    Get PDF
    We study corrections suppressed by one power of the soft gluon energy to the resummation of threshold logarithms for the Drell-Yan cross section and for Deep Inelastic structure functions. While no general factorization theorem is known for these next-to-eikonal (NE) corrections, it is conjectured that at least a subset will exponentiate, along with the logarithms arising at leading power. Here we develop some general tools to study NE logarithms, and we construct an ansatz for threshold resummation that includes various sources of NE corrections, implementing in this context the improved collinear evolution recently proposed by Dokshitzer, Marchesini and Salam (DMS). We compare our ansatz to existing exact results at two and three loops, finding evidence for the exponentiation of leading NE logarithms and confirming the predictivity of DMS evolution.Comment: 17 page

    Iterative structure of finite loop integrals

    Get PDF
    In this paper we develop further and refine the method of differential equations for computing Feynman integrals. In particular, we show that an additional iterative structure emerges for finite loop integrals. As a concrete non-trivial example we study planar master integrals of light-by-light scattering to three loops, and derive analytic results for all values of the Mandelstam variables ss and tt and the mass mm. We start with a recent proposal for defining a basis of loop integrals having uniform transcendental weight properties and use this approach to compute all planar two-loop master integrals in dimensional regularization. We then show how this approach can be further simplified when computing finite loop integrals. This allows us to discuss precisely the subset of integrals that are relevant to the problem. We find that this leads to a block triangular structure of the differential equations, where the blocks correspond to integrals of different weight. We explain how this block triangular form is found in an algorithmic way. Another advantage of working in four dimensions is that integrals of different loop orders are interconnected and can be seamlessly discussed within the same formalism. We use this method to compute all finite master integrals needed up to three loops. Finally, we remark that all integrals have simple Mandelstam representations.Comment: 26 pages plus appendices, 5 figure

    All orders structure and efficient computation of linearly reducible elliptic Feynman integrals

    Full text link
    We define linearly reducible elliptic Feynman integrals, and we show that they can be algorithmically solved up to arbitrary order of the dimensional regulator in terms of a 1-dimensional integral over a polylogarithmic integrand, which we call the inner polylogarithmic part (IPP). The solution is obtained by direct integration of the Feynman parametric representation. When the IPP depends on one elliptic curve (and no other algebraic functions), this class of Feynman integrals can be algorithmically solved in terms of elliptic multiple polylogarithms (eMPLs) by using integration by parts identities. We then elaborate on the differential equations method. Specifically, we show that the IPP can be mapped to a generalized integral topology satisfying a set of differential equations in ϵ\epsilon-form. In the examples we consider the canonical differential equations can be directly solved in terms of eMPLs up to arbitrary order of the dimensional regulator. The remaining 1-dimensional integral may be performed to express such integrals completely in terms of eMPLs. We apply these methods to solve two- and three-points integrals in terms of eMPLs. We analytically continue these integrals to the physical region by using their 1-dimensional integral representation.Comment: The differential equations method is applied to linearly reducible elliptic Feynman integrals, the solutions are in terms of elliptic polylogarithms, JHEP version, 50 page

    Integrating technologies into mathematics: Comparing the cases of square roots and integrals

    Get PDF
    Although the term is often used to denote electronic devices, the idea of a 'technology', with its origins in the Greek techne (art or skill), refers in its most general sense to a way of doing things. The development and availability of various technologies for computation over the past forty years or so have influenced what we regard as important in mathematics, and what we teach to students, given the inevitable time pressures on our curriculum. In this note, we compare and contrast current approaches to two important mathematical ideas, those of square roots and of integrals, and how these have changed (or not) over time
    corecore