20,437 research outputs found

    A Mediated Definite Delegation Model allowing for Certified Grid Job Submission

    Full text link
    Grid computing infrastructures need to provide traceability and accounting of their users" activity and protection against misuse and privilege escalation. A central aspect of multi-user Grid job environments is the necessary delegation of privileges in the course of a job submission. With respect to these generic requirements this document describes an improved handling of multi-user Grid jobs in the ALICE ("A Large Ion Collider Experiment") Grid Services. A security analysis of the ALICE Grid job model is presented with derived security objectives, followed by a discussion of existing approaches of unrestricted delegation based on X.509 proxy certificates and the Grid middleware gLExec. Unrestricted delegation has severe security consequences and limitations, most importantly allowing for identity theft and forgery of delegated assignments. These limitations are discussed and formulated, both in general and with respect to an adoption in line with multi-user Grid jobs. Based on the architecture of the ALICE Grid Services, a new general model of mediated definite delegation is developed and formulated, allowing a broker to assign context-sensitive user privileges to agents. The model provides strong accountability and long- term traceability. A prototype implementation allowing for certified Grid jobs is presented including a potential interaction with gLExec. The achieved improvements regarding system security, malicious job exploitation, identity protection, and accountability are emphasized, followed by a discussion of non- repudiation in the face of malicious Grid jobs

    A Comparison of Big Data Frameworks on a Layered Dataflow Model

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models, for which only informal (and often confusing) semantics is generally provided, all share a common underlying model, namely, the Dataflow model. The Dataflow model we propose shows how various tools share the same expressiveness at different levels of abstraction. The contribution of this work is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm), thus making it easier to understand high-level data-processing applications written in such frameworks. Second, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level.Comment: 19 pages, 6 figures, 2 tables, In Proc. of the 9th Intl Symposium on High-Level Parallel Programming and Applications (HLPP), July 4-5 2016, Muenster, German

    Scalable Reliable SD Erlang Design

    Get PDF
    This technical report presents the design of Scalable Distributed (SD) Erlang: a set of language-level changes that aims to enable Distributed Erlang to scale for server applications on commodity hardware with at most 100,000 cores. We cover a number of aspects, specifically anticipated architecture, anticipated failures, scalable data structures, and scalable computation. Other two components that guided us in the design of SD Erlang are design principles and typical Erlang applications. The design principles summarise the type of modifications we aim to allow Erlang scalability. Erlang exemplars help us to identify the main Erlang scalability issues and hypothetically validate the SD Erlang design

    Contour: A Practical System for Binary Transparency

    Full text link
    Transparency is crucial in security-critical applications that rely on authoritative information, as it provides a robust mechanism for holding these authorities accountable for their actions. A number of solutions have emerged in recent years that provide transparency in the setting of certificate issuance, and Bitcoin provides an example of how to enforce transparency in a financial setting. In this work we shift to a new setting, the distribution of software package binaries, and present a system for so-called "binary transparency." Our solution, Contour, uses proactive methods for providing transparency, privacy, and availability, even in the face of persistent man-in-the-middle attacks. We also demonstrate, via benchmarks and a test deployment for the Debian software repository, that Contour is the only system for binary transparency that satisfies the efficiency and coordination requirements that would make it possible to deploy today.Comment: International Workshop on Cryptocurrencies and Blockchain Technology (CBT), 201

    Load-Balanced Fractional Repetition Codes

    Full text link
    We introduce load-balanced fractional repetition (LBFR) codes, which are a strengthening of fractional repetition (FR) codes. LBFR codes have the additional property that multiple node failures can be sequentially repaired by downloading no more than one block from any other node. This allows for better use of the network, and can additionally reduce the number of disk reads necessary to repair multiple nodes. We characterize LBFR codes in terms of their adjacency graphs, and use this characterization to present explicit constructions LBFR codes with storage capacity comparable existing FR codes. Surprisingly, in some parameter regimes, our constructions of LBFR codes match the parameters of the best constructions of FR codes
    • …
    corecore