14,786 research outputs found

    Wiring optimization explanation in neuroscience: What is Special about it?

    Get PDF
    This paper examines the explanatory distinctness of wiring optimization models in neuroscience. Wiring optimization models aim to represent the organizational features of neural and brain systems as optimal (or near-optimal) solutions to wiring optimization problems. My claim is that that wiring optimization models provide design explanations. In particular, they support ideal interventions on the decision variables of the relevant design problem and assess the impact of such interventions on the viability of the target system

    Morphological Computation: Nothing but Physical Computation

    Get PDF
    The purpose of this paper is to argue against the claim that morphological computation is substantially different from other kinds of physical computation. I show that some (but not all) purported cases of morphological computation do not count as specifically computational, and that those that do are solely physical computational systems. These latter cases are not, however, specific enough: all computational systems, not only morphological ones, may (and sometimes should) be studied in various ways, including their energy efficiency, cost, reliability, and durability. Second, I critically analyze the notion of “offloading” computation to the morphology of an agent or robot, by showing that, literally, computation is sometimes not offloaded but simply avoided. Third, I point out that while the morphology of any agent is indicative of the environment that it is adapted to, or informative about that environment, it does not follow that every agent has access to its morphology as the model of its environment

    Parameter interdependence and success of skeletal muscle modelling

    Get PDF
    In muscle and movement modelling it is almost invariably assumed that force actually exerted is determined by several independent factors. This review considers the fact that length force characteristics are not a relatively fixed property of muscle but should be considered the product of a substantial number of interacting factors. Level of activation and recruitment are influential factors in relation to aspects of muscle architecture. For the level of activation effects of its short term history (potentiation, fatigue in sustained contractions) have to be taken into account and are reviewed on the basis of recent experimental results as well as available literature. History is also an important determinant for the effect of length changes. This concept is introduced on the basis of recent experimental evidence as well as available literature. Regarding effects of muscle architecture, the concepts of primary and secondary distribution of fibre mean sarcomere length are introduced as well as effects of muscle geometry for mono- and bi-articular muscles on those distributions. Implications for motor control are discussed and the need for intramuscular coordination indicated

    Spatial Dispersion of Peering Clusters in the European Internet

    Get PDF
    We study the role played by geographical distance in the peering decisions between Internet Service Providers. Firstly, we assess whether or not the Internet industry shows clustering in peering; we then concentrate on the dynamics of the agglomeration process by studying the effects of bilateral distance in changing the morphology of existing peering patterns. Our results show a dominance of random spatial patterns in peering agreements. The sign of the effect of distance on the peering decision, driving the agglomeration/dispersion process, depends, however, on the initial level of clustering. We show that clustered patterns will disperse in the long run

    Reduction

    Get PDF
    Reduction and reductionism have been central philosophical topics in analytic philosophy of science for more than six decades. Together they encompass a diversity of issues from metaphysics and epistemology. This article provides an introduction to the topic that illuminates how contemporary epistemological discussions took their shape historically and limns the contours of concrete cases of reduction in specific natural sciences. The unity of science and the impulse to accomplish compositional reduction in accord with a layer-cake vision of the sciences, the seminal contributions of Ernest Nagel on theory reduction and how they strongly conditioned subsequent philosophical discussions, and the detailed issues pertaining to different accounts of reduction that arise in both physical and biological science (e.g., limit-case and part-whole reduction in physics, the difference-making principle in genetics, and mechanisms in molecular biology) are explored. The conclusion argues that the epistemological heterogeneity and patchwork organization of the natural sciences encourages a pluralist stance about reduction
    • 

    corecore