156,572 research outputs found

    Evaluating the Impact of Defeasible Argumentation as a Modelling Technique for Reasoning under Uncertainty

    Get PDF
    Limited work exists for the comparison across distinct knowledge-based approaches in Artificial Intelligence (AI) for non-monotonic reasoning, and in particular for the examination of their inferential and explanatory capacity. Non-monotonicity, or defeasibility, allows the retraction of a conclusion in the light of new information. It is a similar pattern to human reasoning, which draws conclusions in the absence of information, but allows them to be corrected once new pieces of evidence arise. Thus, this thesis focuses on a comparison of three approaches in AI for implementation of non-monotonic reasoning models of inference, namely: expert systems, fuzzy reasoning and defeasible argumentation. Three applications from the fields of decision-making in healthcare and knowledge representation and reasoning were selected from real-world contexts for evaluation: human mental workload modelling, computational trust modelling, and mortality occurrence modelling with biomarkers. The link between these applications comes from their presumptively non-monotonic nature. They present incomplete, ambiguous and retractable pieces of evidence. Hence, reasoning applied to them is likely suitable for being modelled by non-monotonic reasoning systems. An experiment was performed by exploiting six deductive knowledge bases produced with the aid of domain experts. These were coded into models built upon the selected reasoning approaches and were subsequently elicited with real-world data. The numerical inferences produced by these models were analysed according to common metrics of evaluation for each field of application. For the examination of explanatory capacity, properties such as understandability, extensibility, and post-hoc interpretability were meticulously described and qualitatively compared. Findings suggest that the variance of the inferences produced by expert systems and fuzzy reasoning models was higher, highlighting poor stability. In contrast, the variance of argument-based models was lower, showing a superior stability of its inferences across different system configurations. In addition, when compared in a context with large amounts of conflicting information, defeasible argumentation exhibited a stronger potential for conflict resolution, while presenting robust inferences. An in-depth discussion of the explanatory capacity showed how defeasible argumentation can lead to the construction of non-monotonic models with appealing properties of explainability, compared to those built with expert systems and fuzzy reasoning. The originality of this research lies in the quantification of the impact of defeasible argumentation. It illustrates the construction of an extensive number of non-monotonic reasoning models through a modular design. In addition, it exemplifies how these models can be exploited for performing non-monotonic reasoning and producing quantitative inferences in real-world applications. It contributes to the field of non-monotonic reasoning by situating defeasible argumentation among similar approaches through a novel empirical comparison

    Design Guidelines for Coffee Vending Machines

    Get PDF
    Walk-up-and-use-systems such as vending and self-service machines request special attention concerning an easy to use and self-explanatory user interface. In this paper we present a set of design guidelines for coffee vending machines based on the results of an expert-based usability evaluation of thirteen different models

    Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation

    Get PDF
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their treatment of the problem of mathematical explanations of physical phenomena. This problem is of central importance in two different recent philosophical disputes: the dispute about the existence on non-causal scientific explanations and the dispute between realists and antirealists in the philosophy of mathematics. My aim in this paper is twofold. I will first argue that Lange (2013) and Pincock (2015) fail to make a significant contribution to these disputes. They fail to contribute to the dispute in the philosophy of mathematics because, in this context, their approach can be seen as question begging. They also fail to contribute to the dispute in the general philosophy of science because, as I will argue, there are important problems with the cases discussed by Lange and Pincock. I will then argue that the source of the problems with these two papers has to do with the fact that the piecemeal approach used to account for mathematical explanation is problematic

    Some Concerns Regarding Explanatory Pluralism: The Explanatory Role of Optimality Models

    Get PDF
    Optimality models are widely used in different parts of biology. Two important questions that have been asked about such models are: are they explanatory and, if so, what type of explanations do they offer? My concern in this paper is with the approach of Rice (2012, 2015) and Irvine (2015), who claim that these models provide non-causal explanations. I argue that there are serious problems with this approach and with the accounts of explanation it is intended to justify. The idea behind this undertaking is to draw attention to an important issue associated with the recent pluralist stance on explanation: the rampant proliferation of theories of explanation. This proliferation supports a pluralist perspective on explanation, and pluralism encourages such a proliferation. But, if we are not careful about how we arrive at and how we justify new accounts of explanation — i.e., if we do not try to avoid the sort of problems discussed in this paper — we may end up trivializing the concept of explanation
    • …
    corecore