116,347 research outputs found

    "If You Can't Beat them, Join them": A Usability Approach to Interdependent Privacy in Cloud Apps

    Get PDF
    Cloud storage services, like Dropbox and Google Drive, have growing ecosystems of 3rd party apps that are designed to work with users' cloud files. Such apps often request full access to users' files, including files shared with collaborators. Hence, whenever a user grants access to a new vendor, she is inflicting a privacy loss on herself and on her collaborators too. Based on analyzing a real dataset of 183 Google Drive users and 131 third party apps, we discover that collaborators inflict a privacy loss which is at least 39% higher than what users themselves cause. We take a step toward minimizing this loss by introducing the concept of History-based decisions. Simply put, users are informed at decision time about the vendors which have been previously granted access to their data. Thus, they can reduce their privacy loss by not installing apps from new vendors whenever possible. Next, we realize this concept by introducing a new privacy indicator, which can be integrated within the cloud apps' authorization interface. Via a web experiment with 141 participants recruited from CrowdFlower, we show that our privacy indicator can significantly increase the user's likelihood of choosing the app that minimizes her privacy loss. Finally, we explore the network effect of History-based decisions via a simulation on top of large collaboration networks. We demonstrate that adopting such a decision-making process is capable of reducing the growth of users' privacy loss by 70% in a Google Drive-based network and by 40% in an author collaboration network. This is despite the fact that we neither assume that users cooperate nor that they exhibit altruistic behavior. To our knowledge, our work is the first to provide quantifiable evidence of the privacy risk that collaborators pose in cloud apps. We are also the first to mitigate this problem via a usable privacy approach.Comment: Authors' extended version of the paper published at CODASPY 201

    Expectation-Aware Planning: A Unifying Framework for Synthesizing and Executing Self-Explaining Plans for Human-Aware Planning

    Full text link
    In this work, we present a new planning formalism called Expectation-Aware planning for decision making with humans in the loop where the human's expectations about an agent may differ from the agent's own model. We show how this formulation allows agents to not only leverage existing strategies for handling model differences but can also exhibit novel behaviors that are generated through the combination of these different strategies. Our formulation also reveals a deep connection to existing approaches in epistemic planning. Specifically, we show how we can leverage classical planning compilations for epistemic planning to solve Expectation-Aware planning problems. To the best of our knowledge, the proposed formulation is the first complete solution to decision-making in the presence of diverging user expectations that is amenable to a classical planning compilation while successfully combining previous works on explanation and explicability. We empirically show how our approach provides a computational advantage over existing approximate approaches that unnecessarily try to search in the space of models while also failing to facilitate the full gamut of behaviors enabled by our framework

    Implanting Life-Cycle Privacy Policies in a Context Database

    Get PDF
    Ambient intelligence (AmI) environments continuously monitor surrounding individuals' context (e.g., location, activity, etc.) to make existing applications smarter, i.e., make decision without requiring user interaction. Such AmI smartness ability is tightly coupled to quantity and quality of the available (past and present) context. However, context is often linked to an individual (e.g., location of a given person) and as such falls under privacy directives. The goal of this paper is to enable the difficult wedding of privacy (automatically fulfilling users' privacy whishes) and smartness in the AmI. interestingly, privacy requirements in the AmI are different from traditional environments, where systems usually manage durable data (e.g., medical or banking information), collected and updated trustfully either by the donor herself, her doctor, or an employee of her bank. Therefore, proper information disclosure to third parties constitutes a major privacy concern in the traditional studies
    • …
    corecore