670 research outputs found

    A Review of Taxonomies of Explainable Artificial Intelligence (XAI) Methods

    Get PDF
    The recent surge in publications related to explainable artificial intelligence (XAI) has led to an almost insurmountable wall if one wants to get started or stay up to date with XAI. For this reason, articles and reviews that present taxonomies of XAI methods seem to be a welcomed way to get an overview of the field. Building on this idea, there is currently a trend of producing such taxonomies, leading to several competing approaches to construct them. In this paper, we will review recent approaches to constructing taxonomies of XAI methods and discuss general challenges concerning them as well as their individual advantages and limitations. Our review is intended to help scholars be aware of challenges current taxonomies face. As we will argue, when charting the field of XAI, it may not be sufficient to rely on one of the approaches we found. To amend this problem, we will propose and discuss three possible solutions: a new taxonomy that incorporates the reviewed ones, a database of XAI methods, and a decision tree to help choose fitting methods

    Reflecting on the past and the present with temporal graph-based models

    Get PDF
    Self-adaptive systems (SAS) need to reflect on the current environment conditions, their past and current behaviour to support decision making. Decisions may have different effects depending on the context. On the one hand, some adaptations may have run into difficulties. On the other hand, users or operators may want to know why the system evolved in a certain direction. Users may just want to know why the system is showing a given behaviour or has made a decision as the behaviour may be surprising or not expected. We argue that answering emerging questions related to situations like these requires storing execution trace models in a way that allows for travelling back and forth in time, qualifying the decision making against available evidence. In this paper, we propose temporal graph databases as a useful representation for trace models to support self-explanation, interactive diagnosis or forensic analysis. We define a generic meta-model for structuring execution traces of SAS, and show how a sequence of traces can be turned into a temporal graph model. We present a first version of a query language for these temporal graphs through a case study, and outline the potential applications for forensic analysis (after the system has finished in a potentially abnormal way), self-explanation, and interactive diagnosis at runtime

    Machine learning for managing structured and semi-structured data

    Get PDF
    As the digitalization of private, commercial, and public sectors advances rapidly, an increasing amount of data is becoming available. In order to gain insights or knowledge from these enormous amounts of raw data, a deep analysis is essential. The immense volume requires highly automated processes with minimal manual interaction. In recent years, machine learning methods have taken on a central role in this task. In addition to the individual data points, their interrelationships often play a decisive role, e.g. whether two patients are related to each other or whether they are treated by the same physician. Hence, relational learning is an important branch of research, which studies how to harness this explicitly available structural information between different data points. Recently, graph neural networks have gained importance. These can be considered an extension of convolutional neural networks from regular grids to general (irregular) graphs. Knowledge graphs play an essential role in representing facts about entities in a machine-readable way. While great efforts are made to store as many facts as possible in these graphs, they often remain incomplete, i.e., true facts are missing. Manual verification and expansion of the graphs is becoming increasingly difficult due to the large volume of data and must therefore be assisted or substituted by automated procedures which predict missing facts. The field of knowledge graph completion can be roughly divided into two categories: Link Prediction and Entity Alignment. In Link Prediction, machine learning models are trained to predict unknown facts between entities based on the known facts. Entity Alignment aims at identifying shared entities between graphs in order to link several such knowledge graphs based on some provided seed alignment pairs. In this thesis, we present important advances in the field of knowledge graph completion. For Entity Alignment, we show how to reduce the number of required seed alignments while maintaining performance by novel active learning techniques. We also discuss the power of textual features and show that graph-neural-network-based methods have difficulties with noisy alignment data. For Link Prediction, we demonstrate how to improve the prediction for unknown entities at training time by exploiting additional metadata on individual statements, often available in modern graphs. Supported with results from a large-scale experimental study, we present an analysis of the effect of individual components of machine learning models, e.g., the interaction function or loss criterion, on the task of link prediction. We also introduce a software library that simplifies the implementation and study of such components and makes them accessible to a wide research community, ranging from relational learning researchers to applied fields, such as life sciences. Finally, we propose a novel metric for evaluating ranking results, as used for both completion tasks. It allows for easier interpretation and comparison, especially in cases with different numbers of ranking candidates, as encountered in the de-facto standard evaluation protocols for both tasks.Mit der rasant fortschreitenden Digitalisierung des privaten, kommerziellen und öffentlichen Sektors werden immer grĂ¶ĂŸere Datenmengen verfĂŒgbar. Um aus diesen enormen Mengen an Rohdaten Erkenntnisse oder Wissen zu gewinnen, ist eine tiefgehende Analyse unerlĂ€sslich. Das immense Volumen erfordert hochautomatisierte Prozesse mit minimaler manueller Interaktion. In den letzten Jahren haben Methoden des maschinellen Lernens eine zentrale Rolle bei dieser Aufgabe eingenommen. Neben den einzelnen Datenpunkten spielen oft auch deren ZusammenhĂ€nge eine entscheidende Rolle, z.B. ob zwei Patienten miteinander verwandt sind oder ob sie vom selben Arzt behandelt werden. Daher ist das relationale Lernen ein wichtiger Forschungszweig, der untersucht, wie diese explizit verfĂŒgbaren strukturellen Informationen zwischen verschiedenen Datenpunkten nutzbar gemacht werden können. In letzter Zeit haben Graph Neural Networks an Bedeutung gewonnen. Diese können als eine Erweiterung von CNNs von regelmĂ€ĂŸigen Gittern auf allgemeine (unregelmĂ€ĂŸige) Graphen betrachtet werden. Wissensgraphen spielen eine wesentliche Rolle bei der Darstellung von Fakten ĂŒber EntitĂ€ten in maschinenlesbaren Form. Obwohl große Anstrengungen unternommen werden, so viele Fakten wie möglich in diesen Graphen zu speichern, bleiben sie oft unvollstĂ€ndig, d. h. es fehlen Fakten. Die manuelle ÜberprĂŒfung und Erweiterung der Graphen wird aufgrund der großen Datenmengen immer schwieriger und muss daher durch automatisierte Verfahren unterstĂŒtzt oder ersetzt werden, die fehlende Fakten vorhersagen. Das Gebiet der WissensgraphenvervollstĂ€ndigung lĂ€sst sich grob in zwei Kategorien einteilen: Link Prediction und Entity Alignment. Bei der Link Prediction werden maschinelle Lernmodelle trainiert, um unbekannte Fakten zwischen EntitĂ€ten auf der Grundlage der bekannten Fakten vorherzusagen. Entity Alignment zielt darauf ab, gemeinsame EntitĂ€ten zwischen Graphen zu identifizieren, um mehrere solcher Wissensgraphen auf der Grundlage einiger vorgegebener Paare zu verknĂŒpfen. In dieser Arbeit stellen wir wichtige Fortschritte auf dem Gebiet der VervollstĂ€ndigung von Wissensgraphen vor. FĂŒr das Entity Alignment zeigen wir, wie die Anzahl der benötigten Paare reduziert werden kann, wĂ€hrend die Leistung durch neuartige aktive Lerntechniken erhalten bleibt. Wir erörtern auch die LeistungsfĂ€higkeit von Textmerkmalen und zeigen, dass auf Graph-Neural-Networks basierende Methoden Schwierigkeiten mit verrauschten Paar-Daten haben. FĂŒr die Link Prediction demonstrieren wir, wie die Vorhersage fĂŒr unbekannte EntitĂ€ten zur Trainingszeit verbessert werden kann, indem zusĂ€tzliche Metadaten zu einzelnen Aussagen genutzt werden, die oft in modernen Graphen verfĂŒgbar sind. GestĂŒtzt auf Ergebnisse einer groß angelegten experimentellen Studie prĂ€sentieren wir eine Analyse der Auswirkungen einzelner Komponenten von Modellen des maschinellen Lernens, z. B. der Interaktionsfunktion oder des Verlustkriteriums, auf die Aufgabe der Link Prediction. Außerdem stellen wir eine Softwarebibliothek vor, die die Implementierung und Untersuchung solcher Komponenten vereinfacht und sie einer breiten Forschungsgemeinschaft zugĂ€nglich macht, die von Forschern im Bereich des relationalen Lernens bis hin zu angewandten Bereichen wie den Biowissenschaften reicht. Schließlich schlagen wir eine neuartige Metrik fĂŒr die Bewertung von Ranking-Ergebnissen vor, wie sie fĂŒr beide Aufgaben verwendet wird. Sie ermöglicht eine einfachere Interpretation und einen leichteren Vergleich, insbesondere in FĂ€llen mit einer unterschiedlichen Anzahl von Kandidaten, wie sie in den de-facto Standardbewertungsprotokollen fĂŒr beide Aufgaben vorkommen

    Why Should I Choose You? AutoXAI: A Framework for Selecting and Tuning eXplainable AI Solutions

    Full text link
    In recent years, a large number of XAI (eXplainable Artificial Intelligence) solutions have been proposed to explain existing ML (Machine Learning) models or to create interpretable ML models. Evaluation measures have recently been proposed and it is now possible to compare these XAI solutions. However, selecting the most relevant XAI solution among all this diversity is still a tedious task, especially when meeting specific needs and constraints. In this paper, we propose AutoXAI, a framework that recommends the best XAI solution and its hyperparameters according to specific XAI evaluation metrics while considering the user's context (dataset, ML model, XAI needs and constraints). It adapts approaches from context-aware recommender systems and strategies of optimization and evaluation from AutoML (Automated Machine Learning). We apply AutoXAI to two use cases, and show that it recommends XAI solutions adapted to the user's needs with the best hyperparameters matching the user's constraints.Comment: 16 pages, 7 figures, to be published in CIKM202
    • 

    corecore