803 research outputs found

    LIMEADE: A General Framework for Explanation-Based Human Tuning of Opaque Machine Learners

    Full text link
    Research in human-centered AI has shown the benefits of systems that can explain their predictions. Methods that allow humans to tune a model in response to the explanations are similarly useful. While both capabilities are well-developed for transparent learning models (e.g., linear models and GA2Ms), and recent techniques (e.g., LIME and SHAP) can generate explanations for opaque models, no method for tuning opaque models in response to explanations has been user-tested to date. This paper introduces LIMEADE, a general framework for tuning an arbitrary machine learning model based on an explanation of the model's prediction. We demonstrate the generality of our approach with two case studies. First, we successfully utilize LIMEADE for the human tuning of opaque image classifiers. Second, we apply our framework to a neural recommender system for scientific papers on a public website and report on a user study showing that our framework leads to significantly higher perceived user control, trust, and satisfaction. Analyzing 300 user logs from our publicly-deployed website, we uncover a tradeoff between canonical greedy explanations and diverse explanations that better facilitate human tuning.Comment: 16 pages, 7 figure

    Editable User Profiles for Controllable Text Recommendation

    Full text link
    Methods for making high-quality recommendations often rely on learning latent representations from interaction data. These methods, while performant, do not provide ready mechanisms for users to control the recommendation they receive. Our work tackles this problem by proposing LACE, a novel concept value bottleneck model for controllable text recommendations. LACE represents each user with a succinct set of human-readable concepts through retrieval given user-interacted documents and learns personalized representations of the concepts based on user documents. This concept based user profile is then leveraged to make recommendations. The design of our model affords control over the recommendations through a number of intuitive interactions with a transparent user profile. We first establish the quality of recommendations obtained from LACE in an offline evaluation on three recommendation tasks spanning six datasets in warm-start, cold-start, and zero-shot setups. Next, we validate the controllability of LACE under simulated user interactions. Finally, we implement LACE in an interactive controllable recommender system and conduct a user study to demonstrate that users are able to improve the quality of recommendations they receive through interactions with an editable user profile.Comment: Accepted to SIGIR 2023; Pre-print, camera-ready to follo

    From Evaluating to Forecasting Performance: How to Turn Information Retrieval, Natural Language Processing and Recommender Systems into Predictive Sciences

    Full text link
    We describe the state-of-the-art in performance modeling and prediction for Information Retrieval (IR), Natural Language Processing (NLP) and Recommender Systems (RecSys) along with its shortcomings and strengths. We present a framework for further research, identifying five major problem areas: understanding measures, performance analysis, making underlying assumptions explicit, identifying application features determining performance, and the development of prediction models describing the relationship between assumptions, features and resulting performanc

    AI Transparency in the Age of LLMs: A Human-Centered Research Roadmap

    Full text link
    The rise of powerful large language models (LLMs) brings about tremendous opportunities for innovation but also looming risks for individuals and society at large. We have reached a pivotal moment for ensuring that LLMs and LLM-infused applications are developed and deployed responsibly. However, a central pillar of responsible AI -- transparency -- is largely missing from the current discourse around LLMs. It is paramount to pursue new approaches to provide transparency for LLMs, and years of research at the intersection of AI and human-computer interaction (HCI) highlight that we must do so with a human-centered perspective: Transparency is fundamentally about supporting appropriate human understanding, and this understanding is sought by different stakeholders with different goals in different contexts. In this new era of LLMs, we must develop and design approaches to transparency by considering the needs of stakeholders in the emerging LLM ecosystem, the novel types of LLM-infused applications being built, and the new usage patterns and challenges around LLMs, all while building on lessons learned about how people process, interact with, and make use of information. We reflect on the unique challenges that arise in providing transparency for LLMs, along with lessons learned from HCI and responsible AI research that has taken a human-centered perspective on AI transparency. We then lay out four common approaches that the community has taken to achieve transparency -- model reporting, publishing evaluation results, providing explanations, and communicating uncertainty -- and call out open questions around how these approaches may or may not be applied to LLMs. We hope this provides a starting point for discussion and a useful roadmap for future research

    An introduction to explainable artificial intelligence with LIME and SHAP

    Full text link
    Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Albert Clapés i Sintes i Sergio Escalera Guerrero[en] Artificial intelligence (AI) and more specifically machine learning (ML) have shown their potential by approaching or even exceeding human levels of accuracy for a variety of real-world problems. However, the highest accuracy for large modern datasets is often achieved by complex models that even experts struggle to interpret, creating a tradeoff between accuracy and interpretability. These models are known for being "black box" and opaque, which is especially problematic in industries like healthcare. Therefore, understanding the reasons behind predictions is crucial in establishing trust, which is fundamental if one plans to take action based on a prediction, or when deciding whether or not to implement a new model. Here is where explainable artificial intelligence (XAI) comes in by helping humans to comprehend and trust the results and output created by a machine learning model. This project is organised in 3 chapters with the aim of introducing the reader to the field of explainable artificial intelligence. Machine learning and some related concepts are introduced in the first chapter. The second chapter focuses on the theory of the random forest model in detail. Finally, in the third chapter, the theory behind two contemporary and influential XAI methods, LIME and SHAP, is formalised. Additionally, a public diabetes tabular dataset is used to illustrate an application of these two methods in the medical sector. The project concludes with a discussion of its possible future works

    Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

    Get PDF
    In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.Basque GovernmentConsolidated Research Group MATHMODE - Department of Education of the Basque Government IT1294-19Spanish GovernmentEuropean Commission TIN2017-89517-PBBVA Foundation through its Ayudas Fundacion BBVA a Equipos de Investigacion Cientifica 2018 call (DeepSCOP project)European Commission 82561
    • …
    corecore