8,076 research outputs found

    Spatial Period-Doubling Agglomeration of a Core-Periphery Model with a System of Cities

    Get PDF
    The orientation and progress of spatial agglomeration for Krugman's core--periphery model are investigated in this paper. Possible agglomeration patterns for a system of cities spread uniformly on a circle are set forth theoretically. For example, a possible and most likely course predicted for eight cities is a gradual and successive one---concentration into four cities and then into two cities en route to a single city. The existence of this course is ensured by numerical simulation for the model. Such gradual and successive agglomeration, which is called spatial-period doubling, presents a sharp contrast with the agglomeration of two cities, for which spontaneous concentration to a single city is observed in models of various kinds. It exercises caution about the adequacy of the two cities as a platform of the spatial agglomerations and demonstrates the need of the study on a system of cities

    Spatial Period-Doubling Agglomeration of a Core-Periphery Model with a System of Cities

    Get PDF
    The orientation and progress of spatial agglomeration for Krugman's core--periphery model are investigated in this paper. Possible agglomeration patterns for a system of cities spread uniformly on a circle are set forth theoretically. For example, a possible and most likely course predicted for eight cities is a gradual and successive one---concentration into four cities and then into two cities en route to a single city. The existence of this course is ensured by numerical simulation for the model. Such gradual and successive agglomeration, which is called spatial-period doubling, presents a sharp contrast with the agglomeration of two cities, for which spontaneous concentration to a single city is observed in models of various kinds. It exercises caution about the adequacy of the two cities as a platform of the spatial agglomerations and demonstrates the need of the study on a system of cities.Agglomeration of population; Bifurcation; Core-periphery model; Group theory; Spatial period doubling

    Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence

    Full text link
    Incremental learning (IL) has received a lot of attention recently, however, the literature lacks a precise problem definition, proper evaluation settings, and metrics tailored specifically for the IL problem. One of the main objectives of this work is to fill these gaps so as to provide a common ground for better understanding of IL. The main challenge for an IL algorithm is to update the classifier whilst preserving existing knowledge. We observe that, in addition to forgetting, a known issue while preserving knowledge, IL also suffers from a problem we call intransigence, inability of a model to update its knowledge. We introduce two metrics to quantify forgetting and intransigence that allow us to understand, analyse, and gain better insights into the behaviour of IL algorithms. We present RWalk, a generalization of EWC++ (our efficient version of EWC [Kirkpatrick2016EWC]) and Path Integral [Zenke2017Continual] with a theoretically grounded KL-divergence based perspective. We provide a thorough analysis of various IL algorithms on MNIST and CIFAR-100 datasets. In these experiments, RWalk obtains superior results in terms of accuracy, and also provides a better trade-off between forgetting and intransigence

    A Primal-Dual Augmented Lagrangian

    Get PDF
    Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we discuss the formulation of subproblems in which the objective is a primal-dual generalization of the Hestenes-Powell augmented Lagrangian function. This generalization has the crucial feature that it is minimized with respect to both the primal and the dual variables simultaneously. A benefit of this approach is that the quality of the dual variables is monitored explicitly during the solution of the subproblem. Moreover, each subproblem may be regularized by imposing explicit bounds on the dual variables. Two primal-dual variants of conventional primal methods are proposed: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual \ell1 linearly constrained Lagrangian (pd\ell1-LCL) method
    corecore