59,712 research outputs found

    Explaining Simulations Through Self Explaining Agents

    Get PDF
    Several strategies are used to explain emergent interaction patterns in agent-based simulations. A distinction can be made between simulations in which the agents just behave in a reactive way, and simulations involving agents with also pro-active (goal-directed) behavior. Pro-active behavior is more variable and harder to predict than reactive behavior, and therefore it might be harder to explain. However, the approach presented in this paper tries to make advantage of the agents' pro-activeness by using it to explain their behavior. The aggregation of the agents' explanations form a basis for explaining the simulation as a whole. In this paper, an agent model that is able to generate (pro-active) behavior and explanations about that behavior is introduced, and the implementation of the model is discussed. Examples show how the link between behavior generation and explanation in the model can contribute to the explanation of a simulation.Explanation, Agents, Goal-Based Behavior, Virtual Training

    Continuous Interaction with a Virtual Human

    Get PDF
    Attentive Speaking and Active Listening require that a Virtual Human be capable of simultaneous perception/interpretation and production of communicative behavior. A Virtual Human should be able to signal its attitude and attention while it is listening to its interaction partner, and be able to attend to its interaction partner while it is speaking – and modify its communicative behavior on-the-fly based on what it perceives from its partner. This report presents the results of a four week summer project that was part of eNTERFACE’10. The project resulted in progress on several aspects of continuous interaction such as scheduling and interrupting multimodal behavior, automatic classification of listener responses, generation of response eliciting behavior, and models for appropriate reactions to listener responses. A pilot user study was conducted with ten participants. In addition, the project yielded a number of deliverables that are released for public access

    Local and Global Explanations of Agent Behavior: Integrating Strategy Summaries with Saliency Maps

    Get PDF
    With advances in reinforcement learning (RL), agents are now being developed in high-stakes application domains such as healthcare and transportation. Explaining the behavior of these agents is challenging, as the environments in which they act have large state spaces, and their decision-making can be affected by delayed rewards, making it difficult to analyze their behavior. To address this problem, several approaches have been developed. Some approaches attempt to convey the global\textit{global} behavior of the agent, describing the actions it takes in different states. Other approaches devised local\textit{local} explanations which provide information regarding the agent's decision-making in a particular state. In this paper, we combine global and local explanation methods, and evaluate their joint and separate contributions, providing (to the best of our knowledge) the first user study of combined local and global explanations for RL agents. Specifically, we augment strategy summaries that extract important trajectories of states from simulations of the agent with saliency maps which show what information the agent attends to. Our results show that the choice of what states to include in the summary (global information) strongly affects people's understanding of agents: participants shown summaries that included important states significantly outperformed participants who were presented with agent behavior in a randomly set of chosen world-states. We find mixed results with respect to augmenting demonstrations with saliency maps (local information), as the addition of saliency maps did not significantly improve performance in most cases. However, we do find some evidence that saliency maps can help users better understand what information the agent relies on in its decision making, suggesting avenues for future work that can further improve explanations of RL agents

    Presenting in Virtual Worlds: Towards an Architecture for a 3D Presenter explaining 2D-Presented Information

    Get PDF
    Entertainment, education and training are changing because of multi-party interaction technology. In the past we have seen the introduction of embodied agents and robots that take the role of a museum guide, a news presenter, a teacher, a receptionist, or someone who is trying to sell you insurances, houses or tickets. In all these cases the embodied agent needs to explain and describe. In this paper we contribute the design of a 3D virtual presenter that uses different output channels to present and explain. Speech and animation (posture, pointing and involuntary movements) are among these channels. The behavior is scripted and synchronized with the display of a 2D presentation with associated text and regions that can be pointed at (sheets, drawings, and paintings). In this paper the emphasis is on the interaction between 3D presenter and the 2D presentation
    corecore