1,033 research outputs found

    The Challenges in SDN/ML Based Network Security : A Survey

    Full text link
    Machine Learning is gaining popularity in the network security domain as many more network-enabled devices get connected, as malicious activities become stealthier, and as new technologies like Software Defined Networking (SDN) emerge. Sitting at the application layer and communicating with the control layer, machine learning based SDN security models exercise a huge influence on the routing/switching of the entire SDN. Compromising the models is consequently a very desirable goal. Previous surveys have been done on either adversarial machine learning or the general vulnerabilities of SDNs but not both. Through examination of the latest ML-based SDN security applications and a good look at ML/SDN specific vulnerabilities accompanied by common attack methods on ML, this paper serves as a unique survey, making a case for more secure development processes of ML-based SDN security applications.Comment: 8 pages. arXiv admin note: substantial text overlap with arXiv:1705.0056

    Visual Analytics of Neuron Vulnerability to Adversarial Attacks on Convolutional Neural Networks

    Full text link
    Adversarial attacks on a convolutional neural network (CNN) -- injecting human-imperceptible perturbations into an input image -- could fool a high-performance CNN into making incorrect predictions. The success of adversarial attacks raises serious concerns about the robustness of CNNs, and prevents them from being used in safety-critical applications, such as medical diagnosis and autonomous driving. Our work introduces a visual analytics approach to understanding adversarial attacks by answering two questions: (1) which neurons are more vulnerable to attacks and (2) which image features do these vulnerable neurons capture during the prediction? For the first question, we introduce multiple perturbation-based measures to break down the attacking magnitude into individual CNN neurons and rank the neurons by their vulnerability levels. For the second, we identify image features (e.g., cat ears) that highly stimulate a user-selected neuron to augment and validate the neuron's responsibility. Furthermore, we support an interactive exploration of a large number of neurons by aiding with hierarchical clustering based on the neurons' roles in the prediction. To this end, a visual analytics system is designed to incorporate visual reasoning for interpreting adversarial attacks. We validate the effectiveness of our system through multiple case studies as well as feedback from domain experts.Comment: Accepted by the Special Issue on Human-Centered Explainable AI, ACM Transactions on Interactive Intelligent System

    Talking Trojan: Analyzing an Industry-Wide Disclosure

    Full text link
    While vulnerability research often focuses on technical findings and post-public release industrial response, we provide an analysis of the rest of the story: the coordinated disclosure process from discovery through public release. The industry-wide 'Trojan Source' vulnerability which affected most compilers, interpreters, code editors, and code repositories provided an interesting natural experiment, enabling us to compare responses by firms versus nonprofits and by firms that managed their own response versus firms that outsourced it. We document the interaction with bug bounty programs, government disclosure assistance, academic peer review, and press coverage, among other topics. We compare the response to an attack on source code with the response to a comparable attack on NLP systems employing machine-learning techniques. We conclude with recommendations to improve the global coordinated disclosure system

    AI Potentiality and Awareness: A Position Paper from the Perspective of Human-AI Teaming in Cybersecurity

    Full text link
    This position paper explores the broad landscape of AI potentiality in the context of cybersecurity, with a particular emphasis on its possible risk factors with awareness, which can be managed by incorporating human experts in the loop, i.e., "Human-AI" teaming. As artificial intelligence (AI) technologies advance, they will provide unparalleled opportunities for attack identification, incident response, and recovery. However, the successful deployment of AI into cybersecurity measures necessitates an in-depth understanding of its capabilities, challenges, and ethical and legal implications to handle associated risk factors in real-world application areas. Towards this, we emphasize the importance of a balanced approach that incorporates AI's computational power with human expertise. AI systems may proactively discover vulnerabilities and detect anomalies through pattern recognition, and predictive modeling, significantly enhancing speed and accuracy. Human experts can explain AI-generated decisions to stakeholders, regulators, and end-users in critical situations, ensuring responsibility and accountability, which helps establish trust in AI-driven security solutions. Therefore, in this position paper, we argue that human-AI teaming is worthwhile in cybersecurity, in which human expertise such as intuition, critical thinking, or contextual understanding is combined with AI's computational power to improve overall cyber defenses.Comment: 10 pages, Springe

    Adversarial Training Towards Robust Multimedia Recommender System

    Full text link
    With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.Comment: TKD

    Artificial Intelligence and Machine Learning in Cybersecurity: Applications, Challenges, and Opportunities for MIS Academics

    Get PDF
    The availability of massive amounts of data, fast computers, and superior machine learning (ML) algorithms has spurred interest in artificial intelligence (AI). It is no surprise, then, that we observe an increase in the application of AI in cybersecurity. Our survey of AI applications in cybersecurity shows most of the present applications are in the areas of malware identification and classification, intrusion detection, and cybercrime prevention. We should, however, be aware that AI-enabled cybersecurity is not without its drawbacks. Challenges to AI solutions include a shortage of good quality data to train machine learning models, the potential for exploits via adversarial AI/ML, and limited human expertise in AI. However, the rewards in terms of increased accuracy of cyberattack predictions, faster response to cyberattacks, and improved cybersecurity make it worthwhile to overcome these challenges. We present a summary of the current research on the application of AI and ML to improve cybersecurity, challenges that need to be overcome, and research opportunities for academics in management information systems
    corecore