2,105 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Explainable Neural Attention Recommender Systems

    Get PDF
    Recommender systems, predictive models that provide lists of personalized suggestions, have become increasingly popular in many web-based businesses. By presenting potential items that may interest a user, these systems are able to better monetize and improve users’ satisfaction. In recent years, the most successful approaches rely on capturing what best define users and items in the form of latent vectors, a numeric representation that assumes all instances can be described by their respective affiliation towards a set of hidden features. However, recommendation methods based on latent features still face some realworld limitations. The data sparsity problem originates from the unprecedented variety of available items, making generated suggestions irrelevant to many users. Furthermore, many systems have been recently expected to accompany their suggestions with corresponding reasoning. Users who receive unjustified recommendations they do not agree with are susceptible to stop using the system or ignore its suggestions. In this work we investigate the current trends in the field of recommender systems and focus on two rising areas, deep recommendation and explainable recommender systems. First we present Textual and Contextual Embedding-based Neural Recommender (TCENR), a model that mitigates the data sparsity problem in the area of point-of-interest (POI) recommendation. This method employs different types of deep neural networks to learn varied perspectives of the same user-location interaction, using textual reviews, geographical data and social networks

    Explainable Neural Attention Recommender Systems

    Get PDF
    Recommender systems, predictive models that provide lists of personalized suggestions, have become increasingly popular in many web-based businesses. By presenting potential items that may interest a user, these systems are able to better monetize and improve users’ satisfaction. In recent years, the most successful approaches rely on capturing what best define users and items in the form of latent vectors, a numeric representation that assumes all instances can be described by their respective affiliation towards a set of hidden features. However, recommendation methods based on latent features still face some realworld limitations. The data sparsity problem originates from the unprecedented variety of available items, making generated suggestions irrelevant to many users. Furthermore, many systems have been recently expected to accompany their suggestions with corresponding reasoning. Users who receive unjustified recommendations they do not agree with are susceptible to stop using the system or ignore its suggestions. In this work we investigate the current trends in the field of recommender systems and focus on two rising areas, deep recommendation and explainable recommender systems. First we present Textual and Contextual Embedding-based Neural Recommender (TCENR), a model that mitigates the data sparsity problem in the area of point-of-interest (POI) recommendation. This method employs different types of deep neural networks to learn varied perspectives of the same user-location interaction, using textual reviews, geographical data and social networks

    Recommending on graphs: a comprehensive review from a data perspective

    Full text link
    Recent advances in graph-based learning approaches have demonstrated their effectiveness in modelling users' preferences and items' characteristics for Recommender Systems (RSS). Most of the data in RSS can be organized into graphs where various objects (e.g., users, items, and attributes) are explicitly or implicitly connected and influence each other via various relations. Such a graph-based organization brings benefits to exploiting potential properties in graph learning (e.g., random walk and network embedding) techniques to enrich the representations of the user and item nodes, which is an essential factor for successful recommendations. In this paper, we provide a comprehensive survey of Graph Learning-based Recommender Systems (GLRSs). Specifically, we start from a data-driven perspective to systematically categorize various graphs in GLRSs and analyze their characteristics. Then, we discuss the state-of-the-art frameworks with a focus on the graph learning module and how they address practical recommendation challenges such as scalability, fairness, diversity, explainability and so on. Finally, we share some potential research directions in this rapidly growing area.Comment: Accepted by UMUA

    Behavior-Driven Model Design: A Deep Learning Recommendation Model Jointing Users and Products Reviews

    Get PDF
    Data-driven is widely mentioned, but the data is generated by user behavior. Our work aims to utilize a behavior-driven model design pattern to improve accuracy and provide explanations in review-based recommendations. Review-based recommendation introduces review text to overcome the sparseness and unexplainably of rating or scores-based model. Driven by users rating behavior and human cognitive abilities, we proposed a deep learning recommendation model jointing users and products reviews (DLRM-UPR) to learn user preferences and product characteristics adaptively. The DLRM-UPR consists of word, text, and context co-attention layers considering the interaction between each user-product-context pair. Extensive experiments on real datasets demonstrate that DLRM-UPR outperforms existing state-of-the-art models. In addition, the relevant information in the reviews and the suggestion for improving the user experience can be highlighted to explain the recommendation results
    • …
    corecore