2,456 research outputs found

    Explainable Reasoning over Knowledge Graphs for Recommendation

    Full text link
    Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.Comment: 8 pages, 5 figures, AAAI-201

    Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

    Full text link
    Recent advances in personalized recommendation have sparked great interest in the exploitation of rich structured information provided by knowledge graphs. Unlike most existing approaches that only focus on leveraging knowledge graphs for more accurate recommendation, we perform explicit reasoning with knowledge for decision making so that the recommendations are generated and supported by an interpretable causal inference procedure. To this end, we propose a method called Policy-Guided Path Reasoning (PGPR), which couples recommendation and interpretability by providing actual paths in a knowledge graph. Our contributions include four aspects. We first highlight the significance of incorporating knowledge graphs into recommendation to formally define and interpret the reasoning process. Second, we propose a reinforcement learning (RL) approach featuring an innovative soft reward strategy, user-conditional action pruning and a multi-hop scoring function. Third, we design a policy-guided graph search algorithm to efficiently and effectively sample reasoning paths for recommendation. Finally, we extensively evaluate our method on several large-scale real-world benchmark datasets, obtaining favorable results compared with state-of-the-art methods.Comment: Accepted in SIGIR 201

    Empowering recommender systems using automatically generated Knowledge Graphs and Reinforcement Learning

    Full text link
    Personalized recommendations have a growing importance in direct marketing, which motivates research to enhance customer experiences by knowledge graph (KG) applications. For example, in financial services, companies may benefit from providing relevant financial articles to their customers to cultivate relationships, foster client engagement and promote informed financial decisions. While several approaches center on KG-based recommender systems for improved content, in this study we focus on interpretable KG-based recommender systems for decision making.To this end, we present two knowledge graph-based approaches for personalized article recommendations for a set of customers of a large multinational financial services company. The first approach employs Reinforcement Learning and the second approach uses the XGBoost algorithm for recommending articles to the customers. Both approaches make use of a KG generated from both structured (tabular data) and unstructured data (a large body of text data).Using the Reinforcement Learning-based recommender system we could leverage the graph traversal path leading to the recommendation as a way to generate interpretations (Path Directed Reasoning (PDR)). In the XGBoost-based approach, one can also provide explainable results using post-hoc methods such as SHAP (SHapley Additive exPlanations) and ELI5 (Explain Like I am Five).Importantly, our approach offers explainable results, promoting better decision-making. This study underscores the potential of combining advanced machine learning techniques with KG-driven insights to bolster experience in customer relationship management.Comment: Accepted at KDD (OARS) 2023 [https://oars-workshop.github.io/

    Faithful Path Language Modelling for Explainable Recommendation over Knowledge Graph

    Full text link
    Path reasoning methods over knowledge graphs have gained popularity for their potential to improve transparency in recommender systems. However, the resulting models still rely on pre-trained knowledge graph embeddings, fail to fully exploit the interdependence between entities and relations in the KG for recommendation, and may generate inaccurate explanations. In this paper, we introduce PEARLM, a novel approach that efficiently captures user behaviour and product-side knowledge through language modelling. With our approach, knowledge graph embeddings are directly learned from paths over the KG by the language model, which also unifies entities and relations in the same optimisation space. Constraints on the sequence decoding additionally guarantee path faithfulness with respect to the KG. Experiments on two datasets show the effectiveness of our approach compared to state-of-the-art baselines. Source code and datasets: AVAILABLE AFTER GETTING ACCEPTED

    CAFE: Coarse-to-Fine Neural Symbolic Reasoning for Explainable Recommendation

    Full text link
    Recent research explores incorporating knowledge graphs (KG) into e-commerce recommender systems, not only to achieve better recommendation performance, but more importantly to generate explanations of why particular decisions are made. This can be achieved by explicit KG reasoning, where a model starts from a user node, sequentially determines the next step, and walks towards an item node of potential interest to the user. However, this is challenging due to the huge search space, unknown destination, and sparse signals over the KG, so informative and effective guidance is needed to achieve a satisfactory recommendation quality. To this end, we propose a CoArse-to-FinE neural symbolic reasoning approach (CAFE). It first generates user profiles as coarse sketches of user behaviors, which subsequently guide a path-finding process to derive reasoning paths for recommendations as fine-grained predictions. User profiles can capture prominent user behaviors from the history, and provide valuable signals about which kinds of path patterns are more likely to lead to potential items of interest for the user. To better exploit the user profiles, an improved path-finding algorithm called Profile-guided Path Reasoning (PPR) is also developed, which leverages an inventory of neural symbolic reasoning modules to effectively and efficiently find a batch of paths over a large-scale KG. We extensively experiment on four real-world benchmarks and observe substantial gains in the recommendation performance compared with state-of-the-art methods.Comment: Accepted in CIKM 202
    corecore