10,402 research outputs found

    Learning Decision Trees Recurrently Through Communication

    Full text link
    Integrated interpretability without sacrificing the prediction accuracy of decision making algorithms has the potential of greatly improving their value to the user. Instead of assigning a label to an image directly, we propose to learn iterative binary sub-decisions, inducing sparsity and transparency in the decision making process. The key aspect of our model is its ability to build a decision tree whose structure is encoded into the memory representation of a Recurrent Neural Network jointly learned by two models communicating through message passing. In addition, our model assigns a semantic meaning to each decision in the form of binary attributes, providing concise, semantic and relevant rationalizations to the user. On three benchmark image classification datasets, including the large-scale ImageNet, our model generates human interpretable binary decision sequences explaining the predictions of the network while maintaining state-of-the-art accuracy.Comment: Accepted in IEEE CVPR 202

    Network Analysis for Explanation

    Full text link
    Safety critical systems strongly require the quality aspects of artificial intelligence including explainability. In this paper, we analyzed a trained network to extract features which mainly contribute the inference. Based on the analysis, we developed a simple solution to generate explanations of the inference processes

    TED: Teaching AI to Explain its Decisions

    Full text link
    Artificial intelligence systems are being increasingly deployed due to their potential to increase the efficiency, scale, consistency, fairness, and accuracy of decisions. However, as many of these systems are opaque in their operation, there is a growing demand for such systems to provide explanations for their decisions. Conventional approaches to this problem attempt to expose or discover the inner workings of a machine learning model with the hope that the resulting explanations will be meaningful to the consumer. In contrast, this paper suggests a new approach to this problem. It introduces a simple, practical framework, called Teaching Explanations for Decisions (TED), that provides meaningful explanations that match the mental model of the consumer. We illustrate the generality and effectiveness of this approach with two different examples, resulting in highly accurate explanations with no loss of prediction accuracy for these two examples.Comment: This article leverages some content from arXiv:1805.11648; presented at ACM/AAAI AIES'1

    Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead

    Full text link
    Black box machine learning models are currently being used for high stakes decision-making throughout society, causing problems throughout healthcare, criminal justice, and in other domains. People have hoped that creating methods for explaining these black box models will alleviate some of these problems, but trying to \textit{explain} black box models, rather than creating models that are \textit{interpretable} in the first place, is likely to perpetuate bad practices and can potentially cause catastrophic harm to society. There is a way forward -- it is to design models that are inherently interpretable. This manuscript clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare, and computer vision.Comment: Author's pre-publication version of a 2019 Nature Machine Intelligence article. Shorter Version was published in NIPS 2018 Workshop on Critiquing and Correcting Trends in Machine Learning. Expands also on NSF Statistics at a Crossroads Webina

    Explainability in Human-Agent Systems

    Full text link
    This paper presents a taxonomy of explainability in Human-Agent Systems. We consider fundamental questions about the Why, Who, What, When and How of explainability. First, we define explainability, and its relationship to the related terms of interpretability, transparency, explicitness, and faithfulness. These definitions allow us to answer why explainability is needed in the system, whom it is geared to and what explanations can be generated to meet this need. We then consider when the user should be presented with this information. Last, we consider how objective and subjective measures can be used to evaluate the entire system. This last question is the most encompassing as it will need to evaluate all other issues regarding explainability

    Improving Transparency of Deep Neural Inference Process

    Full text link
    Deep learning techniques are rapidly advanced recently, and becoming a necessity component for widespread systems. However, the inference process of deep learning is black-box, and not very suitable to safety-critical systems which must exhibit high transparency. In this paper, to address this black-box limitation, we develop a simple analysis method which consists of 1) structural feature analysis: lists of the features contributing to inference process, 2) linguistic feature analysis: lists of the natural language labels describing the visual attributes for each feature contributing to inference process, and 3) consistency analysis: measuring consistency among input data, inference (label), and the result of our structural and linguistic feature analysis. Our analysis is simplified to reflect the actual inference process for high transparency, whereas it does not include any additional black-box mechanisms such as LSTM for highly human readable results. We conduct experiments and discuss the results of our analysis qualitatively and quantitatively, and come to believe that our work improves the transparency of neural networks. Evaluated through 12,800 human tasks, 75% workers answer that input data and result of our feature analysis are consistent, and 70% workers answer that inference (label) and result of our feature analysis are consistent. In addition to the evaluation of the proposed analysis, we find that our analysis also provide suggestions, or possible next actions such as expanding neural network complexity or collecting training data to improve a neural network.Comment: 11 pages, 14 figures, 1 table. This is a pre-print of an article accepted in "Progress in Artificial Intelligence" on 26 Feb 2019. The final authenticated version will be available online soo

    Grad-CAM++: Improved Visual Explanations for Deep Convolutional Networks

    Full text link
    Over the last decade, Convolutional Neural Network (CNN) models have been highly successful in solving complex vision problems. However, these deep models are perceived as "black box" methods considering the lack of understanding of their internal functioning. There has been a significant recent interest in developing explainable deep learning models, and this paper is an effort in this direction. Building on a recently proposed method called Grad-CAM, we propose a generalized method called Grad-CAM++ that can provide better visual explanations of CNN model predictions, in terms of better object localization as well as explaining occurrences of multiple object instances in a single image, when compared to state-of-the-art. We provide a mathematical derivation for the proposed method, which uses a weighted combination of the positive partial derivatives of the last convolutional layer feature maps with respect to a specific class score as weights to generate a visual explanation for the corresponding class label. Our extensive experiments and evaluations, both subjective and objective, on standard datasets showed that Grad-CAM++ provides promising human-interpretable visual explanations for a given CNN architecture across multiple tasks including classification, image caption generation and 3D action recognition; as well as in new settings such as knowledge distillation.Comment: 17 Pages, 15 Figures, 11 Tables. Accepted in the proceedings of IEEE Winter Conf. on Applications of Computer Vision (WACV2018). Extended version is under review at IEEE Transactions on Pattern Analysis and Machine Intelligenc

    An Adversarial Approach for Explaining the Predictions of Deep Neural Networks

    Full text link
    Machine learning models have been successfully applied to a wide range of applications including computer vision, natural language processing, and speech recognition. A successful implementation of these models however, usually relies on deep neural networks (DNNs) which are treated as opaque black-box systems due to their incomprehensible complexity and intricate internal mechanism. In this work, we present a novel algorithm for explaining the predictions of a DNN using adversarial machine learning. Our approach identifies the relative importance of input features in relation to the predictions based on the behavior of an adversarial attack on the DNN. Our algorithm has the advantage of being fast, consistent, and easy to implement and interpret. We present our detailed analysis that demonstrates how the behavior of an adversarial attack, given a DNN and a task, stays consistent for any input test data point proving the generality of our approach. Our analysis enables us to produce consistent and efficient explanations. We illustrate the effectiveness of our approach by conducting experiments using a variety of DNNs, tasks, and datasets. Finally, we compare our work with other well-known techniques in the current literature

    Towards Interrogating Discriminative Machine Learning Models

    Full text link
    It is oftentimes impossible to understand how machine learning models reach a decision. While recent research has proposed various technical approaches to provide some clues as to how a learning model makes individual decisions, they cannot provide users with ability to inspect a learning model as a complete entity. In this work, we propose a new technical approach that augments a Bayesian regression mixture model with multiple elastic nets. Using the enhanced mixture model, we extract explanations for a target model through global approximation. To demonstrate the utility of our approach, we evaluate it on different learning models covering the tasks of text mining and image recognition. Our results indicate that the proposed approach not only outperforms the state-of-the-art technique in explaining individual decisions but also provides users with an ability to discover the vulnerabilities of a learning model

    Cyclic Boosting -- an explainable supervised machine learning algorithm

    Full text link
    Supervised machine learning algorithms have seen spectacular advances and surpassed human level performance in a wide range of specific applications. However, using complex ensemble or deep learning algorithms typically results in black box models, where the path leading to individual predictions cannot be followed in detail. In order to address this issue, we propose the novel "Cyclic Boosting" machine learning algorithm, which allows to efficiently perform accurate regression and classification tasks while at the same time allowing a detailed understanding of how each individual prediction was made.Comment: added a discussion about causalit
    corecore