43 research outputs found

    Improvement in Alzheimer's Disease MRI Images Analysis by Convolutional Neural Networks Via Topological Optimization

    Full text link
    This research underscores the efficacy of Fourier topological optimization in refining MRI imagery, thereby bolstering the classification precision of Alzheimer's Disease through convolutional neural networks. Recognizing that MRI scans are indispensable for neurological assessments, but frequently grapple with issues like blurriness and contrast irregularities, the deployment of Fourier topological optimization offered enhanced delineation of brain structures, ameliorated noise, and superior contrast. The applied techniques prioritized boundary enhancement, contrast and brightness adjustments, and overall image lucidity. Employing CNN architectures VGG16, ResNet50, InceptionV3, and Xception, the post-optimization analysis revealed a marked elevation in performance. Conclusively, the amalgamation of Fourier topological optimization with CNNs delineates a promising trajectory for the nuanced classification of Alzheimer's Disease, portending a transformative impact on its diagnostic paradigms

    Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: Evaluation in Alzheimer's disease

    Full text link
    Background: Although convolutional neural networks (CNN) achieve high diagnostic accuracy for detecting Alzheimer's disease (AD) dementia based on magnetic resonance imaging (MRI) scans, they are not yet applied in clinical routine. One important reason for this is a lack of model comprehensibility. Recently developed visualization methods for deriving CNN relevance maps may help to fill this gap. We investigated whether models with higher accuracy also rely more on discriminative brain regions predefined by prior knowledge. Methods: We trained a CNN for the detection of AD in N=663 T1-weighted MRI scans of patients with dementia and amnestic mild cognitive impairment (MCI) and verified the accuracy of the models via cross-validation and in three independent samples including N=1655 cases. We evaluated the association of relevance scores and hippocampus volume to validate the clinical utility of this approach. To improve model comprehensibility, we implemented an interactive visualization of 3D CNN relevance maps. Results: Across three independent datasets, group separation showed high accuracy for AD dementia vs. controls (AUC\geq0.92) and moderate accuracy for MCI vs. controls (AUC\approx0.75). Relevance maps indicated that hippocampal atrophy was considered as the most informative factor for AD detection, with additional contributions from atrophy in other cortical and subcortical regions. Relevance scores within the hippocampus were highly correlated with hippocampal volumes (Pearson's r\approx-0.86, p<0.001). Conclusion: The relevance maps highlighted atrophy in regions that we had hypothesized a priori. This strengthens the comprehensibility of the CNN models, which were trained in a purely data-driven manner based on the scans and diagnosis labels.Comment: 24 pages, 9 figures/tables, supplementary material, source code available on GitHu

    Explainable deep learning classifiers for disease detection based on structural brain MRI data

    Get PDF
    In dieser Doktorarbeit wird die Frage untersucht, wie erfolgreich deep learning bei der Diagnostik von neurodegenerativen Erkrankungen unterstützen kann. In 5 experimentellen Studien wird die Anwendung von Convolutional Neural Networks (CNNs) auf Daten der Magnetresonanztomographie (MRT) untersucht. Ein Schwerpunkt wird dabei auf die Erklärbarkeit der eigentlich intransparenten Modelle gelegt. Mit Hilfe von Methoden der erklärbaren künstlichen Intelligenz (KI) werden Heatmaps erstellt, die die Relevanz einzelner Bildbereiche für das Modell darstellen. Die 5 Studien dieser Dissertation zeigen das Potenzial von CNNs zur Krankheitserkennung auf neurologischen MRT, insbesondere bei der Kombination mit Methoden der erklärbaren KI. Mehrere Herausforderungen wurden in den Studien aufgezeigt und Lösungsansätze in den Experimenten evaluiert. Über alle Studien hinweg haben CNNs gute Klassifikationsgenauigkeiten erzielt und konnten durch den Vergleich von Heatmaps zur klinischen Literatur validiert werden. Weiterhin wurde eine neue CNN Architektur entwickelt, spezialisiert auf die räumlichen Eigenschaften von Gehirn MRT Bildern.Deep learning and especially convolutional neural networks (CNNs) have a high potential of being implemented into clinical decision support software for tasks such as diagnosis and prediction of disease courses. This thesis has studied the application of CNNs on structural MRI data for diagnosing neurological diseases. Specifically, multiple sclerosis and Alzheimer’s disease were used as classification targets due to their high prevalence, data availability and apparent biomarkers in structural MRI data. The classification task is challenging since pathology can be highly individual and difficult for human experts to detect and due to small sample sizes, which are caused by the high acquisition cost and sensitivity of medical imaging data. A roadblock in adopting CNNs to clinical practice is their lack of interpretability. Therefore, after optimizing the machine learning models for predictive performance (e.g. balanced accuracy), we have employed explainability methods to study the reliability and validity of the trained models. The deep learning models achieved good predictive performance of over 87% balanced accuracy on all tasks and the explainability heatmaps showed coherence with known clinical biomarkers for both disorders. Explainability methods were compared quantitatively using brain atlases and shortcomings regarding their robustness were revealed. Further investigations showed clear benefits of transfer-learning and image registration on the model performance. Lastly, a new CNN layer type was introduced, which incorporates a prior on the spatial homogeneity of neuro-MRI data. CNNs excel when used on natural images which possess spatial heterogeneity, and even though MRI data and natural images share computational similarities, the composition and orientation of neuro-MRI is very distinct. The introduced patch-individual filter (PIF) layer breaks the assumption of spatial invariance of CNNs and reduces convergence time on different data sets without reducing predictive performance. The presented work highlights many challenges that CNNs for disease diagnosis face on MRI data and defines as well as tests strategies to overcome those

    Alzheimer’s And Parkinson’s Disease Classification Using Deep Learning Based On MRI: A Review

    Get PDF
    Neurodegenerative disorders present a current challenge for accurate diagnosis and for providing precise prognostic information. Alzheimer’s disease (AD) and Parkinson's disease (PD), may take several years to obtain a definitive diagnosis. Due to the increased aging population in developed countries, neurodegenerative diseases such as AD and PD have become more prevalent and thus new technologies and more accurate tests are needed to improve and accelerate the diagnostic procedure in the early stages of these diseases. Deep learning has shown significant promise in computer-assisted AD and PD diagnosis based on MRI with the widespread use of artificial intelligence in the medical domain. This article analyses and evaluates the effectiveness of existing Deep learning (DL)-based approaches to identify neurological illnesses using MRI data obtained using various modalities, including functional and structural MRI. Several current research issues are identified toward the conclusion, along with several potential future study directions

    Enhancing Automated and Early Detection of Alzheimer's Disease Using Out-Of-Distribution Detection

    Full text link
    More than 10.7% of people aged 65 and older are affected by Alzheimer's disease. Early diagnosis and treatment are crucial as most Alzheimer's patients are unaware of having it until the effects become detrimental. AI has been known to use magnetic resonance imaging (MRI) to diagnose Alzheimer's. However, models which produce low rates of false diagnoses are critical to prevent unnecessary treatments. Thus, we trained supervised Random Forest models with segmented brain volumes and Convolutional Neural Network (CNN) outputs to classify different Alzheimer's stages. We then applied out-of-distribution (OOD) detection to the CNN model, enabling it to report OOD if misclassification is likely, thereby reducing false diagnoses. With an accuracy of 98% for detection and 95% for classification, our model based on CNN results outperformed our segmented volume model, which had detection and classification accuracies of 93% and 87%, respectively. Applying OOD detection to the CNN model enabled it to flag brain tumor images as OOD with 96% accuracy and minimal overall accuracy reduction. By using OOD detection to enhance the reliability of MRI classification using CNNs, we lowered the rate of false positives and eliminated a significant disadvantage of using Machine Learning models for healthcare tasks. Source code available upon request.Comment: 10 pages, 8 figures, 3 table

    An Explainable Deep Learning Model For Prediction Of Severity Of Alzheimer\u27s Disease

    Get PDF
    Deep Convolutional Neural Networks (CNNs) have become the go-To method for medical imaging classification on various imaging modalities for binary and multiclass problems. Deep CNNs extract spatial features from image data hierarchically, with deeper layers learning more relevant features for the classification application. Despite the high predictive accuracy, usability lags in practical applications due to the black-box model perception. Model explainability and interpretability are essential for successfully integrating artificial intelligence into healthcare practice. This work addresses the challenge of an explainable deep learning model for the prediction of the severity of Alzheimer\u27s disease (AD). AD diagnosis and prognosis heavily rely on neuroimaging information, particularly magnetic resonance imaging (MRI). We present a deep learning model framework that integrates a local data-driven interpretation method that explains the relationship between the predicted AD severity from the CNN and the input MR brain image. The deep explainer uses SHapley Additive exPlanation values to quantity the contribution of different brain regions utilized by the CNN to predict outcomes. We conduct a comparative analysis of three high-performing CNN models: DenseNet121, DenseNet169, and Inception-ResNet-v2. The framework shows high sensitivity and specificity in the test sample of subjects with varying levels of AD severity. We also correlated five key AD neurocognitive assessment outcome measures and the APOE genotype biomarker with model misclassifications to facilitate a better understanding of model performance

    Predicting recovery following stroke: deep learning, multimodal data and feature selection using explainable AI

    Full text link
    Machine learning offers great potential for automated prediction of post-stroke symptoms and their response to rehabilitation. Major challenges for this endeavour include the very high dimensionality of neuroimaging data, the relatively small size of the datasets available for learning, and how to effectively combine neuroimaging and tabular data (e.g. demographic information and clinical characteristics). This paper evaluates several solutions based on two strategies. The first is to use 2D images that summarise MRI scans. The second is to select key features that improve classification accuracy. Additionally, we introduce the novel approach of training a convolutional neural network (CNN) on images that combine regions-of-interest extracted from MRIs, with symbolic representations of tabular data. We evaluate a series of CNN architectures (both 2D and a 3D) that are trained on different representations of MRI and tabular data, to predict whether a composite measure of post-stroke spoken picture description ability is in the aphasic or non-aphasic range. MRI and tabular data were acquired from 758 English speaking stroke survivors who participated in the PLORAS study. The classification accuracy for a baseline logistic regression was 0.678 for lesion size alone, rising to 0.757 and 0.813 when initial symptom severity and recovery time were successively added. The highest classification accuracy 0.854 was observed when 8 regions-of-interest was extracted from each MRI scan and combined with lesion size, initial severity and recovery time in a 2D Residual Neural Network.Our findings demonstrate how imaging and tabular data can be combined for high post-stroke classification accuracy, even when the dataset is small in machine learning terms. We conclude by proposing how the current models could be improved to achieve even higher levels of accuracy using images from hospital scanners

    Explainable artificial intelligence (XAI) in radiology and nuclear medicine: a literature review

    Get PDF
    Rational: Deep learning (DL) has demonstrated a remarkable performance in diagnostic imaging for various diseases and modalities and therefore has a high potential to be used as a clinical tool. However, current practice shows low deployment of these algorithms in clinical practice, because DL algorithms lack transparency and trust due to their underlying black-box mechanism. For successful employment, explainable artificial intelligence (XAI) could be introduced to close the gap between the medical professionals and the DL algorithms. In this literature review, XAI methods available for magnetic resonance (MR), computed tomography (CT), and positron emission tomography (PET) imaging are discussed and future suggestions are made.Methods: PubMed, and Clarivate Analytics/Web of Science Core Collection were screened. Articles were considered eligible for inclusion if XAI was used (and well described) to describe the behavior of a DL model used in MR, CT and PET imaging.Results: A total of 75 articles were included of which 54 and 17 articles described post and ad hoc XAI methods, respectively, and 4 articles described both XAI methods. Major variations in performance is seen between the methods. Overall, post hoc XAI lacks the ability to provide class-discriminative and target-specific explanation. Ad hoc XAI seems to tackle this because of its intrinsic ability to explain. However, quality control of the XAI methods is rarely applied and therefore systematic comparison between the methods is difficult.Conclusion: There is currently no clear consensus on how XAI should be deployed in order to close the gap between medical professionals and DL algorithms for clinical implementation. We advocate for systematic technical and clinical quality assessment of XAI methods. Also, to ensure end-to-end unbiased and safe integration of XAI in clinical workflow, (anatomical) data minimization and quality control methods should be included
    corecore