28,025 research outputs found

    Does Explainable Artificial Intelligence Improve Human Decision-Making?

    Full text link
    Explainable AI provides insight into the "why" for model predictions, offering potential for users to better understand and trust a model, and to recognize and correct AI predictions that are incorrect. Prior research on human and explainable AI interactions has focused on measures such as interpretability, trust, and usability of the explanation. Whether explainable AI can improve actual human decision-making and the ability to identify the problems with the underlying model are open questions. Using real datasets, we compare and evaluate objective human decision accuracy without AI (control), with an AI prediction (no explanation), and AI prediction with explanation. We find providing any kind of AI prediction tends to improve user decision accuracy, but no conclusive evidence that explainable AI has a meaningful impact. Moreover, we observed the strongest predictor for human decision accuracy was AI accuracy and that users were somewhat able to detect when the AI was correct versus incorrect, but this was not significantly affected by including an explanation. Our results indicate that, at least in some situations, the "why" information provided in explainable AI may not enhance user decision-making, and further research may be needed to understand how to integrate explainable AI into real systems

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science.https://digitalcommons.unomaha.edu/isqafacbooks/1000/thumbnail.jp

    Explainable Text Classification in Legal Document Review A Case Study of Explainable Predictive Coding

    Full text link
    In today's legal environment, lawsuits and regulatory investigations require companies to embark upon increasingly intensive data-focused engagements to identify, collect and analyze large quantities of data. When documents are staged for review the process can require companies to dedicate an extraordinary level of resources, both with respect to human resources, but also with respect to the use of technology-based techniques to intelligently sift through data. For several years, attorneys have been using a variety of tools to conduct this exercise, and most recently, they are accepting the use of machine learning techniques like text classification to efficiently cull massive volumes of data to identify responsive documents for use in these matters. In recent years, a group of AI and Machine Learning researchers have been actively researching Explainable AI. In an explainable AI system, actions or decisions are human understandable. In typical legal `document review' scenarios, a document can be identified as responsive, as long as one or more of the text snippets in a document are deemed responsive. In these scenarios, if predictive coding can be used to locate these responsive snippets, then attorneys could easily evaluate the model's document classification decision. When deployed with defined and explainable results, predictive coding can drastically enhance the overall quality and speed of the document review process by reducing the time it takes to review documents. The authors of this paper propose the concept of explainable predictive coding and simple explainable predictive coding methods to locate responsive snippets within responsive documents. We also report our preliminary experimental results using the data from an actual legal matter that entailed this type of document review.Comment: 2018 IEEE International Conference on Big Dat

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science
    corecore