264 research outputs found

    On the Rationality of Explanations in Classification Algorithms

    Get PDF
    This paper is a first step towards studying the rationality of explanations produced by up-to-date AI systems. Based on the thesis that designing rational explanations for accomplishing trustworthy AI is fundamental for ethics in AI, we study the rationality criteria that explanations in classification algorithms have to meet. In this way, we identify, define, and exemplify characteristic criteria of rational explanations in classification algorithms

    An empirical study on how humans appreciate automated counterfactual explanations which embrace imprecise information

    Get PDF
    The explanatory capacity of interpretable fuzzy rule-based classifiers is usually limited to offering explanations for the predicted class only. A lack of potentially useful explanations for non-predicted alternatives can be overcome by designing methods for the so-called counterfactual reasoning. Nevertheless, state-of-the-art methods for counterfactual explanation generation require special attention to human evaluation aspects, as the final decision upon the classification under consideration is left for the end user. In this paper, we first introduce novel methods for qualitative and quantitative counterfactual explanation generation. Then, we carry out a comparative analysis of qualitative explanation generation methods operating on (combinations of) linguistic terms as well as a quantitative method suggesting precise changes in feature values. Then, we propose a new metric for assessing the perceived complexity of the generated explanations. Further, we design and carry out two human evaluation experiments to assess the explanatory power of the aforementioned methods. As a major result, we show that the estimated explanation complexity correlates well with the informativeness, relevance, and readability of explanations perceived by the targeted study participants. This fact opens the door to using the new automatic complexity metric for guiding multi-objective evolutionary explainable fuzzy modeling in the near futureIlia Stepin is an FPI researcher (grant PRE2019-090153). Jose M. Alonso-Moral is a Ramon y Cajal researcher (grant RYC-2016–19802). This work was supported by the Spanish Ministry of Science and Innovation (grants RTI2018-099646-B-I00, PID2021-123152OB-C21, and TED2021-130295B-C33) and the Galician Ministry of Culture, Education, Professional Training and University (grants ED431F2018/02, ED431G2019/04, and ED431C2022/19). All the grants were co-funded by the European Regional Development Fund (ERDF/FEDER program).S

    Human-centered Explainable AI: Towards a Reflective Sociotechnical Approach

    Full text link
    Explanations--a form of post-hoc interpretability--play an instrumental role in making systems accessible as AI continues to proliferate complex and sensitive sociotechnical systems. In this paper, we introduce Human-centered Explainable AI (HCXAI) as an approach that puts the human at the center of technology design. It develops a holistic understanding of "who" the human is by considering the interplay of values, interpersonal dynamics, and the socially situated nature of AI systems. In particular, we advocate for a reflective sociotechnical approach. We illustrate HCXAI through a case study of an explanation system for non-technical end-users that shows how technical advancements and the understanding of human factors co-evolve. Building on the case study, we lay out open research questions pertaining to further refining our understanding of "who" the human is and extending beyond 1-to-1 human-computer interactions. Finally, we propose that a reflective HCXAI paradigm-mediated through the perspective of Critical Technical Practice and supplemented with strategies from HCI, such as value-sensitive design and participatory design--not only helps us understand our intellectual blind spots, but it can also open up new design and research spaces.Comment: In Proceedings of HCI International 2020: 22nd International Conference On Human-Computer Interactio

    Classification of Explainable Artificial Intelligence Methods through Their Output Formats

    Get PDF
    Machine and deep learning have proven their utility to generate data-driven models with high accuracy and precision. However, their non-linear, complex structures are often difficult to interpret. Consequently, many scholars have developed a plethora of methods to explain their functioning and the logic of their inferences. This systematic review aimed to organise these methods into a hierarchical classification system that builds upon and extends existing taxonomies by adding a significant dimension—the output formats. The reviewed scientific papers were retrieved by conducting an initial search on Google Scholar with the keywords “explainable artificial intelligence”; “explainable machine learning”; and “interpretable machine learning”. A subsequent iterative search was carried out by checking the bibliography of these articles. The addition of the dimension of the explanation format makes the proposed classification system a practical tool for scholars, supporting them to select the most suitable type of explanation format for the problem at hand. Given the wide variety of challenges faced by researchers, the existing XAI methods provide several solutions to meet the requirements that differ considerably between the users, problems and application fields of artificial intelligence (AI). The task of identifying the most appropriate explanation can be daunting, thus the need for a classification system that helps with the selection of methods. This work concludes by critically identifying the limitations of the formats of explanations and by providing recommendations and possible future research directions on how to build a more generally applicable XAI method. Future work should be flexible enough to meet the many requirements posed by the widespread use of AI in several fields, and the new regulation

    CARE: Commonsense-Aware Emotional Response Generation with Latent Concepts

    Full text link
    Rationality and emotion are two fundamental elements of humans. Endowing agents with rationality and emotion has been one of the major milestones in AI. However, in the field of conversational AI, most existing models only specialize in one aspect and neglect the other, which often leads to dull or unrelated responses. In this paper, we hypothesize that combining rationality and emotion into conversational agents can improve response quality. To test the hypothesis, we focus on one fundamental aspect of rationality, i.e., commonsense, and propose CARE, a novel model for commonsense-aware emotional response generation. Specifically, we first propose a framework to learn and construct commonsense-aware emotional latent concepts of the response given an input message and a desired emotion. We then propose three methods to collaboratively incorporate the latent concepts into response generation. Experimental results on two large-scale datasets support our hypothesis and show that our model can produce more accurate and commonsense-aware emotional responses and achieve better human ratings than state-of-the-art models that only specialize in one aspect.Comment: AAAI-202

    A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is the most common type of dementia. Its diagnosis and progression detection have been intensively studied. Nevertheless, research studies often have little effect on clinical practice mainly due to the following reasons: (1) Most studies depend mainly on a single modality, especially neuroimaging; (2) diagnosis and progression detection are usually studied separately as two independent problems; and (3) current studies concentrate mainly on optimizing the performance of complex machine learning models, while disregarding their explainability. As a result, physicians struggle to interpret these models, and feel it is hard to trust them. In this paper, we carefully develop an accurate and interpretable AD diagnosis and progression detection model. This model provides physicians with accurate decisions along with a set of explanations for every decision. Specifically, the model integrates 11 modalities of 1048 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) real-world dataset: 294 cognitively normal, 254 stable mild cognitive impairment (MCI), 232 progressive MCI, and 268 AD. It is actually a two-layer model with random forest (RF) as classifier algorithm. In the first layer, the model carries out a multi-class classification for the early diagnosis of AD patients. In the second layer, the model applies binary classification to detect possible MCI-to-AD progression within three years from a baseline diagnosis. The performance of the model is optimized with key markers selected from a large set of biological and clinical measures. Regarding explainability, we provide, for each layer, global and instance-based explanations of the RF classifier by using the SHapley Additive exPlanations (SHAP) feature attribution framework. In addition, we implement 22 explainers based on decision trees and fuzzy rule-based systems to provide complementary justifications for every RF decision in each layer. Furthermore, these explanations are represented in natural language form to help physicians understand the predictions. The designed model achieves a cross-validation accuracy of 93.95% and an F1-score of 93.94% in the first layer, while it achieves a cross-validation accuracy of 87.08% and an F1-Score of 87.09% in the second layer. The resulting system is not only accurate, but also trustworthy, accountable, and medically applicable, thanks to the provided explanations which are broadly consistent with each other and with the AD medical literature. The proposed system can help to enhance the clinical understanding of AD diagnosis and progression processes by providing detailed insights into the effect of different modalities on the disease riskThis work was supported by National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science and ICT)-NRF-2020R1A2B5B02002478). In addition, Dr. Jose M. Alonso is Ramon y Cajal Researcher (RYC-2016-19802), and its research is supported by the Spanish Ministry of Science, Innovation and Universities (grants RTI2018-099646-B-I00, TIN2017-84796-C2-1-R, TIN2017-90773-REDT, and RED2018-102641-T) and the Galician Ministry of Education, University and Professional Training (grants ED431F 2018/02, ED431C 2018/29, ED431G/08, and ED431G2019/04), with all grants co-funded by the European Regional Development Fund (ERDF/FEDER program)S
    • …
    corecore