5,004 research outputs found

    How hard is it to cross the room? -- Training (Recurrent) Neural Networks to steer a UAV

    Full text link
    This work explores the feasibility of steering a drone with a (recurrent) neural network, based on input from a forward looking camera, in the context of a high-level navigation task. We set up a generic framework for training a network to perform navigation tasks based on imitation learning. It can be applied to both aerial and land vehicles. As a proof of concept we apply it to a UAV (Unmanned Aerial Vehicle) in a simulated environment, learning to cross a room containing a number of obstacles. So far only feedforward neural networks (FNNs) have been used to train UAV control. To cope with more complex tasks, we propose the use of recurrent neural networks (RNN) instead and successfully train an LSTM (Long-Short Term Memory) network for controlling UAVs. Vision based control is a sequential prediction problem, known for its highly correlated input data. The correlation makes training a network hard, especially an RNN. To overcome this issue, we investigate an alternative sampling method during training, namely window-wise truncated backpropagation through time (WW-TBPTT). Further, end-to-end training requires a lot of data which often is not available. Therefore, we compare the performance of retraining only the Fully Connected (FC) and LSTM control layers with networks which are trained end-to-end. Performing the relatively simple task of crossing a room already reveals important guidelines and good practices for training neural control networks. Different visualizations help to explain the behavior learned.Comment: 12 pages, 30 figure

    Unbiased Offline Evaluation of Contextual-bandit-based News Article Recommendation Algorithms

    Full text link
    Contextual bandit algorithms have become popular for online recommendation systems such as Digg, Yahoo! Buzz, and news recommendation in general. \emph{Offline} evaluation of the effectiveness of new algorithms in these applications is critical for protecting online user experiences but very challenging due to their "partial-label" nature. Common practice is to create a simulator which simulates the online environment for the problem at hand and then run an algorithm against this simulator. However, creating simulator itself is often difficult and modeling bias is usually unavoidably introduced. In this paper, we introduce a \emph{replay} methodology for contextual bandit algorithm evaluation. Different from simulator-based approaches, our method is completely data-driven and very easy to adapt to different applications. More importantly, our method can provide provably unbiased evaluations. Our empirical results on a large-scale news article recommendation dataset collected from Yahoo! Front Page conform well with our theoretical results. Furthermore, comparisons between our offline replay and online bucket evaluation of several contextual bandit algorithms show accuracy and effectiveness of our offline evaluation method.Comment: 10 pages, 7 figures, revised from the published version at the WSDM 2011 conferenc
    • …
    corecore