6,384 research outputs found

    Omics measures of ageing and disease susceptibility

    Get PDF
    While genomics has been a major field of study for decades due to relatively inexpensive genotyping arrays, the recent advancement of technology has also allowed the measure and study of various “omics”. There are now numerous methods and platforms available that allow high throughput and high dimensional quantification of many types of biological molecules. Traditional genomics and transcriptomics are now joined by proteomics, metabolomics, glycomics, lipidomics and epigenomics. I was lucky to have access to a unique resource in the Orkney Complex Disease Study (ORCADES), a cohort of individuals from the Orkney Islands that are extremely deeply annotated. Approximately 1000 individuals in ORCADES have genomics, proteomics, lipidomics, glycomics, metabolomics, epigenomics, clinical risk factors and disease phenotypes, as well as body composition measurements from whole body scans. In addition to these cross-sectional omics and health related measures, these individuals also have linked electronic health records (EHR) available, allowing the assessment of the effect of these omics measures on incident disease over a ~10-year follow up period. In this thesis I use this phenotype rich resource to investigate the relationship between multiple types of omics measures and both ageing and health outcomes. First, I used the ORCADES data to construct measures of biological age (BA). The idea that there is an underlying rate at which the body deteriorates with age that varies between individuals of the same chronological age, this biological age, would be more indicative of health status, functional capacity and risk of age-related diseases than chronological age. Previous models estimating BA (ageing clocks) have predominantly been built using a single type of omics assay and comparison between different omics ageing clocks has been limited. I performed the most exhaustive comparison of different omics ageing clocks yet, with eleven clocks spanning nine different omics assays. I show that different omics clocks overlap in the information they provide about age, that some omics clocks track more generalised ageing while others track specific disease risk factors and that omics ageing clocks are prognostic of incident disease over and above chronological age. Second, I assessed whether individually or in multivariable models, omics measures are associated with health-related risk factors or prognostic of incident disease over 10 years post-assessment. I show that 2,686 single omics biomarkers are associated with 10 risk factors and 44 subsequent incident diseases. I also show that models built using multiple biomarkers from whole body scans, metabolomics, proteomics and clinical risk factors are prognostic of subsequent diabetes mellitus and that clinical risk factors are prognostic of incident hypertensive disorders, obesity, ischaemic heart disease and Framingham risk score. Third, I investigated the genetic architecture of a subset of the proteomics measures available in ORCADES, specifically 184 cardiovascular-related proteins. Combining genome-wide association (GWAS) summary statistics from ORCADES and 17 other cohorts from the SCALLOP Consortium, giving a maximum sample size of 26,494 individuals, I performed 184 genome-wide association meta-analyses (GWAMAs) on the levels of these proteins circulating in plasma. I discovered 592 independent significant loci associated with the levels of at least one protein. I found that between 8-37% of these significant loci colocalise with known expression quantitative trait loci (eQTL). I also find evidence of causal associations between 11 plasma protein levels and disease susceptibility using Mendelian randomisation, highlighting potential candidate drug targets

    Examining the Impact of Personal Social Media Use at Work on Workplace Outcomes

    Get PDF
    A noticable shift is underway in today’s multi-generational workforce. As younger employees propel digital workforce transformation and embrace technology adoption in the workplace, organisations need to show they are forward-thinking in their digital transformation strategies, and the emergent integration of social media in organisations is reshaping internal communication strategies, in a bid to improve corporate reputations and foster employee engagement. However, the impact of personal social media use on psychological and behavioural workplace outcomes is still debatebale with contrasting results in the literature identifying both positive and negative effects on workplace outcomes among organisational employees. This study seeks to examine this debate through the lens of social capital theory and study personal social media use at work using distinct variables of social use, cognitive use, and hedonic use. A quantitative analysis of data from 419 organisational employees in Jordan using SEM-PLS reveals that personal social media use at work is a double-edged sword as its impact differs by usage types. First, the social use of personal social media at work reduces job burnout, turnover intention, presenteeism, and absenteeism; it also increases job involvement and organisational citizen behaviour. Second, the cognitive use of personal social media at work increases job involvement, organisational citizen behaviour, employee adaptability, and decreases presenteeism and absenteeism; it also increases job burnout and turnover intention. Finally, the hedonic use of personal social media at work carries only negative effects by increasing job burnout and turnover intention. This study contributes to managerial understanding by showing the impact of different types of personal social media usage and recommends that organisations not limit employee access to personal social media within work time, but rather focus on raising awareness of the negative effects of excessive usage on employee well-being and encourage low to moderate use of personal social media at work and other personal and work-related online interaction associated with positive workplace outcomes. It also clarifies the need for further research in regions such as the Middle East with distinct cultural and socio-economic contexts

    Developing automated meta-research approaches in the preclinical Alzheimer's disease literature

    Get PDF
    Alzheimer’s disease is a devastating neurodegenerative disorder for which there is no cure. A crucial part of the drug development pipeline involves testing therapeutic interventions in animal disease models. However, promising findings in preclinical experiments have not translated into clinical trial success. Reproducibility has often been cited as a major issue affecting biomedical research, where experimental results in one laboratory cannot be replicated in another. By using meta-research (research on research) approaches such as systematic reviews, researchers aim to identify and summarise all available evidence relating to a specific research question. By conducting a meta-analysis, researchers can also combine the results from different experiments statistically to understand the overall effect of an intervention and to explore reasons for variations seen across different publications. Systematic reviews of the preclinical Alzheimer’s disease literature could inform decision making, encourage research improvement, and identify gaps in the literature to guide future research. However, due to the vast amount of potentially useful evidence from animal models of Alzheimer’s disease, it remains difficult to make sense of and utilise this data effectively. Systematic reviews are common practice within evidence based medicine, yet their application to preclinical research is often limited by the time and resources required. In this thesis, I develop, build-upon, and implement automated meta-research approaches to collect, curate, and evaluate the preclinical Alzheimer’s literature. I searched several biomedical databases to obtain all research relevant to Alzheimer’s disease. I developed a novel deduplication tool to automatically identify and remove duplicate publications identified across different databases with minimal human effort. I trained a crowd of reviewers to annotate a subset of the publications identified and used this data to train a machine learning algorithm to screen through the remaining publications for relevance. I developed text-mining tools to extract model, intervention, and treatment information from publications and I improved existing automated tools to extract reported measures to reduce the risk of bias. Using these tools, I created a categorised database of research in transgenic Alzheimer’s disease animal models and created a visual summary of this dataset on an interactive, openly accessible online platform. Using the techniques described, I also identified relevant publications within the categorised dataset to perform systematic reviews of two key outcomes of interest in transgenic Alzheimer’s disease models: (1) synaptic plasticity and transmission in hippocampal slices and (2) motor activity in the open field test. Over 400,000 publications were identified across biomedical research databases, with 230,203 unique publications. In a performance evaluation across different preclinical datasets, the automated deduplication tool I developed could identify over 97% of duplicate citations and a had an error rate similar to that of human performance. When evaluated on a test set of publications, the machine learning classifier trained to identify relevant research in transgenic models performed was highly sensitive (captured 96.5% of relevant publications) and excluded 87.8% of irrelevant publications. Tools to identify the model(s) and outcome measure(s) within the full-text of publications may reduce the burden on reviewers and were found to be more sensitive than searching only the title and abstract of citations. Automated tools to assess risk of bias reporting were highly sensitive and could have the potential to monitor research improvement over time. The final dataset of categorised Alzheimer’s disease research contained 22,375 publications which were then visualised in the interactive web application. Within the application, users can see how many publications report measures to reduce the risk of bias and how many have been classified as using each transgenic model, testing each intervention, and measuring each outcome. Users can also filter to obtain curated lists of relevant research, allowing them to perform systematic reviews at an accelerated pace with reduced effort required to search across databases, and a reduced number of publications to screen for relevance. Both systematic reviews and meta-analyses highlighted failures to report key methodological information within publications. Poor transparency of reporting limited the statistical power I had to understand the sources of between-study variation. However, some variables were found to explain a significant proportion of the heterogeneity. Transgenic animal model had a significant impact on results in both reviews. For certain open field test outcomes, wall colour of the open field arena and the reporting of measures to reduce the risk of bias were found to impact results. For in vitro electrophysiology experiments measuring synaptic plasticity, several electrophysiology parameters, including magnesium concentration of the recording solution, were found to explain a significant proportion of the heterogeneity. Automated meta-research approaches and curated web platforms summarising preclinical research could have the potential to accelerate the conduct of systematic reviews and maximise the potential of existing evidence to inform translation

    Looking at COVID-19 from a Systems Biology Perspective

    Get PDF
    The sudden outbreak and worldwide spread of the SARS-CoV-2 pandemic pushed the scientific community to find fast solutions to cope with the health emergency. COVID-19 complexity, in terms of clinical outcomes, severity, and response to therapy suggested the use of multifactorial strategies, characteristic of the network medicine, to approach the study of the pathobiology. Proteomics and interactomics especially allow to generate datasets that, reduced and represented in the forms of networks, can be analyzed with the tools of systems biology to unveil specific pathways central to virus\u2013human host interaction. Moreover, artificial intelligence tools can be implemented for the identification of druggable targets and drug repurposing. In this review article, we provide an overview of the results obtained so far, from a systems biology perspective, in the understanding of COVID-19 pathobiology and virus\u2013host interactions, and in the development of disease classifiers and tools for drug repurposing

    International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts

    Get PDF
    The present volume on Mathematical Analysis and Applications in Science and Engineering - Book of Extended Abstracts of the ICMASC’2022 collects the extended abstracts of the talks presented at the International Conference on Mathematical Analysis and Applications in Science and Engineering – ICMA2SC'22 that took place at the beautiful city of Porto, Portugal, in June 27th-June 29th 2022 (3 days). Its aim was to bring together researchers in every discipline of applied mathematics, science, engineering, industry, and technology, to discuss the development of new mathematical models, theories, and applications that contribute to the advancement of scientific knowledge and practice. Authors proposed research in topics including partial and ordinary differential equations, integer and fractional order equations, linear algebra, numerical analysis, operations research, discrete mathematics, optimization, control, probability, computational mathematics, amongst others. The conference was designed to maximize the involvement of all participants and will present the state-of- the-art research and the latest achievements.info:eu-repo/semantics/publishedVersio

    Talent Identification and Development in Sports Performance

    Get PDF
    The identification and development of talent have always been a relevant topic in sports performance. In fact, a significant body of research is available worldwide discussing this longitudinal process, the qualities that underpin elite sports performance, and how coaches can facilitate the developmental process of talented athletes. Despite the continued interest given to issues of talent identification and development, recent literature highlights the low predictive value of applied and theoretical talent identification models. Talent is the expression of a complex and multidimensional phenomenon, where, despite the existing practical recommendations, many coaches and stakeholders continue to fail to adequately value the distinction between growth, maturation, and training age. Technological resources have enabled important advances, however, this has been limited essentially to defining or validating motor skills variables or genetic markers that characterize the most talented athletes. Emerging technological resources and recent methodological advances are enabling integrated assessment and monitoring to include maturational, physiological, biomechanical, and perceptual skills while also creating optimal environments for performance and dealing with injury prevention and recovery
    corecore