8,036 research outputs found

    Optimal greenhouse cultivation control: survey and perspectives

    Get PDF
    Abstract: A survey is presented of the literature on greenhouse climate control, positioning the various solutions and paradigms in the framework of optimal control. A separation of timescales allows the separation of the economic optimal control problem of greenhouse cultivation into an off-line problem at the tactical level, and an on-line problem at the operational level. This paradigm is used to classify the literature into three categories: focus on operational control, focus on the tactical level, and truly integrated control. Integrated optimal control warrants the best economical result, and provides a systematic way to design control systems for the innovative greenhouses of the future. Research issues and perspectives are listed as well

    Simulation of site-specific irrigation control strategies with sparse input data

    Get PDF
    Crop and irrigation water use efficiencies may be improved by managing irrigation application timing and volumes using physical and agronomic principles. However, the crop water requirement may be spatially variable due to different soil properties and genetic variations in the crop across the field. Adaptive control strategies can be used to locally control water applications in response to in-field temporal and spatial variability with the aim of maximising both crop development and water use efficiency. A simulation framework ‘VARIwise’ has been created to aid the development, evaluation and management of spatially and temporally varied adaptive irrigation control strategies (McCarthy et al., 2010). VARIwise enables alternative control strategies to be simulated with different crop and environmental conditions and at a range of spatial resolutions. An iterative learning controller and model predictive controller have been implemented in VARIwise to improve the irrigation of cotton. The iterative learning control strategy involves using the soil moisture response to the previous irrigation volume to adjust the applied irrigation volume applied at the next irrigation event. For field implementation this controller has low data requirements as only soil moisture data is required after each irrigation event. In contrast, a model predictive controller has high data requirements as measured soil and plant data are required at a high spatial resolution in a field implementation. Model predictive control involves using a calibrated model to determine the irrigation application and/or timing which results in the highest predicted yield or water use efficiency. The implementation of these strategies is described and a case study is presented to demonstrate the operation of the strategies with various levels of data availability. It is concluded that in situations of sparse data, the iterative learning controller performs significantly better than a model predictive controller

    Learning, Arts, and the Brain: The Dana Consortium Report on Arts and Cognition

    Get PDF
    Reports findings from multiple neuroscientific studies on the impact of arts training on the enhancement of other cognitive capacities, such as reading acquisition, sequence learning, geometrical reasoning, and memory

    Air pollution and livestock production

    Get PDF
    The air in a livestock farming environment contains high concentrations of dust particles and gaseous pollutants. The total inhalable dust can enter the nose and mouth during normal breathing and the thoracic dust can reach into the lungs. However, it is the respirable dust particles that can penetrate further into the gas-exchange region, making it the most hazardous dust component. Prolonged exposure to high concentrations of dust particles can lead to respiratory health issues for both livestock and farming staff. Ammonia, an example of a gaseous pollutant, is derived from the decomposition of nitrous compounds. Increased exposure to ammonia may also have an effect on the health of humans and livestock. There are a number of technologies available to ensure exposure to these pollutants is minimised. Through proactive means, (the optimal design and management of livestock buildings) air quality can be improved to reduce the likelihood of risks associated with sub-optimal air quality. Once air problems have taken hold, other reduction methods need to be applied utilising a more reactive approach. A key requirement for the control of concentration and exposure of airborne pollutants to an acceptable level is to be able to conduct real-time measurements of these pollutants. This paper provides a review of airborne pollution including methods to both measure and control the concentration of pollutants in livestock buildings

    Municipal wastewater treatment with pond technology : historical review and future outlook

    No full text
    Facing an unprecedented population growth, it is difficult to overstress the assets for wastewater treatment of waste stabilization ponds (WSPs), i.e. high removal efficiency, simplicity, and low cost, which have been recognized by numerous scientists and operators. However, stricter discharge standards, changes in wastewater compounds, high emissions of greenhouse gases, and elevated land prices have led to their replacements in many places. This review aims at delivering a comprehensive overview of the historical development and current state of WSPs, and providing further insights to deal with their limitations in the future. The 21st century is witnessing changes in the way of approaching conventional problems in pond technology, in which WSPs should no longer be considered as a low treatment technology. Advanced models and technologies have been integrated for better design, control, and management. The roles of algae, which have been crucial as solar-powered aeration, will continue being a key solution. Yet, the separation of suspended algae to avoid deterioration of the effluent remains a major challenge in WSPs while in the case of high algal rate pond, further research is needed to maximize algal growth yield, select proper strains, and optimize harvesting methods to put algal biomass production in practice. Significant gaps need to be filled in understanding mechanisms of greenhouse gas emission, climate change mitigation, pond ecosystem services, and the fate and toxicity of emerging contaminants. From these insights, adaptation strategies are developed to deal with new opportunities and future challenges

    Application of Neural Networks and multiple regression models in greenhouse climate estimation

    Get PDF
    Artificial Neural Networks (ANNs) are biologically inspired computer programs designed to simulate the way in which the human brain processes information. After a comprehensive literature survey on the application of ANNs in greenhouses, this work describes the results of using ANNs to predict the roof temperature, inside air humidity, soil temperature and inside soil humidity (Tri, RHia, Tis, RHis), in a semi-solar greenhouse according to use some inside and outside parameters in the institute of renewable energy in East Azerbaijan province, Iran. For this purpose, a semi-solar greenhouse was designed and constructed for the first time in Iran. The model database selected beside on the main and important factors influence the four above variables inside the greenhouse. Neural estimation models were constructed with (Vo, Tia, Toa, Ir, Tis, RHia, Tri) as the inputs and (Tri, RHis, Tis, RHia) as the outputs. Optimal parameters for the network were selected via a trial and error procedure on the available data. Results showed that MLP (Multilayer Perceptron) algorithm with 4-6-1(4 inputs in first layer, 6 neurons in hidden layer and an output) and 4-9-1(4 inputs in first layer, 9 neurons in hidden layer and an output) topologies can predict inside soil and air humidity and inside roof and soil temperature with a low error (RMSE=0.25°C, 0.30%, 1.06°C and 0.25% for Tri, RHis, Tis and RHia), respectively. Also the results showed that regression model has a low error to predict Tri (RMSE=0.71°C) and high error to estimate Tis (2.71°C), respectively. In overall, the error for regression model to predict all 4 parameters (Tri, RHis, Tis, RHia) was about 2 times higher than MLP method. It is concluded that ANN represents a promising tool for predicting inside climate in a greenhouse and will be useful in automatic greenhouses. For practical application, however, the farmers should use metrological and experimental data for 12 months of the year to decrease the prediction error

    The Passive Greenhouses

    Get PDF

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested
    • …
    corecore