46,925 research outputs found

    Limited Evaluation Cooperative Co-evolutionary Differential Evolution for Large-scale Neuroevolution

    Get PDF
    Many real-world control and classification tasks involve a large number of features. When artificial neural networks (ANNs) are used for modeling these tasks, the network architectures tend to be large. Neuroevolution is an effective approach for optimizing ANNs; however, there are two bottlenecks that make their application challenging in case of high-dimensional networks using direct encoding. First, classic evolutionary algorithms tend not to scale well for searching large parameter spaces; second, the network evaluation over a large number of training instances is in general time-consuming. In this work, we propose an approach called the Limited Evaluation Cooperative Co-evolutionary Differential Evolution algorithm (LECCDE) to optimize high-dimensional ANNs. The proposed method aims to optimize the pre-synaptic weights of each post-synaptic neuron in different subpopulations using a Cooperative Co-evolutionary Differential Evolution algorithm, and employs a limited evaluation scheme where fitness evaluation is performed on a relatively small number of training instances based on fitness inheritance. We test LECCDE on three datasets with various sizes, and our results show that cooperative co-evolution significantly improves the test error comparing to standard Differential Evolution, while the limited evaluation scheme facilitates a significant reduction in computing time

    Target Directed Event Sequence Generation for Android Applications

    Full text link
    Testing is a commonly used approach to ensure the quality of software, of which model-based testing is a hot topic to test GUI programs such as Android applications (apps). Existing approaches mainly either dynamically construct a model that only contains the GUI information, or build a model in the view of code that may fail to describe the changes of GUI widgets during runtime. Besides, most of these models do not support back stack that is a particular mechanism of Android. Therefore, this paper proposes a model LATTE that is constructed dynamically with consideration of the view information in the widgets as well as the back stack, to describe the transition between GUI widgets. We also propose a label set to link the elements of the LATTE model to program snippets. The user can define a subset of the label set as a target for the testing requirements that need to cover some specific parts of the code. To avoid the state explosion problem during model construction, we introduce a definition "state similarity" to balance the model accuracy and analysis cost. Based on this model, a target directed test generation method is presented to generate event sequences to effectively cover the target. The experiments on several real-world apps indicate that the generated test cases based on LATTE can reach a high coverage, and with the model we can generate the event sequences to cover a given target with short event sequences

    Automatic Differentiation of Rigid Body Dynamics for Optimal Control and Estimation

    Full text link
    Many algorithms for control, optimization and estimation in robotics depend on derivatives of the underlying system dynamics, e.g. to compute linearizations, sensitivities or gradient directions. However, we show that when dealing with Rigid Body Dynamics, these derivatives are difficult to derive analytically and to implement efficiently. To overcome this issue, we extend the modelling tool `RobCoGen' to be compatible with Automatic Differentiation. Additionally, we propose how to automatically obtain the derivatives and generate highly efficient source code. We highlight the flexibility and performance of the approach in two application examples. First, we show a Trajectory Optimization example for the quadrupedal robot HyQ, which employs auto-differentiation on the dynamics including a contact model. Second, we present a hardware experiment in which a 6 DoF robotic arm avoids a randomly moving obstacle in a go-to task by fast, dynamic replanning

    Automated Test Input Generation for Android: Are We There Yet?

    Full text link
    Mobile applications, often simply called "apps", are increasingly widespread, and we use them daily to perform a number of activities. Like all software, apps must be adequately tested to gain confidence that they behave correctly. Therefore, in recent years, researchers and practitioners alike have begun to investigate ways to automate apps testing. In particular, because of Android's open source nature and its large share of the market, a great deal of research has been performed on input generation techniques for apps that run on the Android operating systems. At this point in time, there are in fact a number of such techniques in the literature, which differ in the way they generate inputs, the strategy they use to explore the behavior of the app under test, and the specific heuristics they use. To better understand the strengths and weaknesses of these existing approaches, and get general insight on ways they could be made more effective, in this paper we perform a thorough comparison of the main existing test input generation tools for Android. In our comparison, we evaluate the effectiveness of these tools, and their corresponding techniques, according to four metrics: code coverage, ability to detect faults, ability to work on multiple platforms, and ease of use. Our results provide a clear picture of the state of the art in input generation for Android apps and identify future research directions that, if suitably investigated, could lead to more effective and efficient testing tools for Android

    Task Runtime Prediction in Scientific Workflows Using an Online Incremental Learning Approach

    Full text link
    Many algorithms in workflow scheduling and resource provisioning rely on the performance estimation of tasks to produce a scheduling plan. A profiler that is capable of modeling the execution of tasks and predicting their runtime accurately, therefore, becomes an essential part of any Workflow Management System (WMS). With the emergence of multi-tenant Workflow as a Service (WaaS) platforms that use clouds for deploying scientific workflows, task runtime prediction becomes more challenging because it requires the processing of a significant amount of data in a near real-time scenario while dealing with the performance variability of cloud resources. Hence, relying on methods such as profiling tasks' execution data using basic statistical description (e.g., mean, standard deviation) or batch offline regression techniques to estimate the runtime may not be suitable for such environments. In this paper, we propose an online incremental learning approach to predict the runtime of tasks in scientific workflows in clouds. To improve the performance of the predictions, we harness fine-grained resources monitoring data in the form of time-series records of CPU utilization, memory usage, and I/O activities that are reflecting the unique characteristics of a task's execution. We compare our solution to a state-of-the-art approach that exploits the resources monitoring data based on regression machine learning technique. From our experiments, the proposed strategy improves the performance, in terms of the error, up to 29.89%, compared to the state-of-the-art solutions.Comment: Accepted for presentation at main conference track of 11th IEEE/ACM International Conference on Utility and Cloud Computin

    IntRepair: Informed Repairing of Integer Overflows

    Full text link
    Integer overflows have threatened software applications for decades. Thus, in this paper, we propose a novel technique to provide automatic repairs of integer overflows in C source code. Our technique, based on static symbolic execution, fuses detection, repair generation and validation. This technique is implemented in a prototype named IntRepair. We applied IntRepair to 2,052C programs (approx. 1 million lines of code) contained in SAMATE's Juliet test suite and 50 synthesized programs that range up to 20KLOC. Our experimental results show that IntRepair is able to effectively detect integer overflows and successfully repair them, while only increasing the source code (LOC) and binary (Kb) size by around 1%, respectively. Further, we present the results of a user study with 30 participants which shows that IntRepair repairs are more than 10x efficient as compared to manually generated code repairsComment: Accepted for publication at the IEEE TSE journal. arXiv admin note: text overlap with arXiv:1710.0372

    Automatic Software Repair: a Bibliography

    Get PDF
    This article presents a survey on automatic software repair. Automatic software repair consists of automatically finding a solution to software bugs without human intervention. This article considers all kinds of repairs. First, it discusses behavioral repair where test suites, contracts, models, and crashing inputs are taken as oracle. Second, it discusses state repair, also known as runtime repair or runtime recovery, with techniques such as checkpoint and restart, reconfiguration, and invariant restoration. The uniqueness of this article is that it spans the research communities that contribute to this body of knowledge: software engineering, dependability, operating systems, programming languages, and security. It provides a novel and structured overview of the diversity of bug oracles and repair operators used in the literature

    Portfolio Methods for Optimal Planning: an Empirical Analysis

    Get PDF
    Combining the complementary strengths of several algorithms through portfolio approaches has been demonstrated to be effective in solving a wide range of AI problems. Notably, portfolio techniques have been prominently applied to suboptimal (satisficing) AI planning. Here, we consider the construction of sequential planner portfolios for (domain- independent) optimal planning. Specifically, we introduce four techniques (three of which are dynamic) for per-instance planner schedule generation using problem instance features, and investigate the usefulness of a range of static and dynamic techniques for combining planners. Our extensive experimental analysis demonstrates the benefits of using static and dynamic sequential portfolios for optimal planning, and provides insights on the most suitable conditions for their fruitful exploitation

    A comprehensive evaluation of alignment algorithms in the context of RNA-seq.

    Get PDF
    Transcriptome sequencing (RNA-Seq) overcomes limitations of previously used RNA quantification methods and provides one experimental framework for both high-throughput characterization and quantification of transcripts at the nucleotide level. The first step and a major challenge in the analysis of such experiments is the mapping of sequencing reads to a transcriptomic origin including the identification of splicing events. In recent years, a large number of such mapping algorithms have been developed, all of which have in common that they require algorithms for aligning a vast number of reads to genomic or transcriptomic sequences. Although the FM-index based aligner Bowtie has become a de facto standard within mapping pipelines, a much larger number of possible alignment algorithms have been developed also including other variants of FM-index based aligners. Accordingly, developers and users of RNA-seq mapping pipelines have the choice among a large number of available alignment algorithms. To provide guidance in the choice of alignment algorithms for these purposes, we evaluated the performance of 14 widely used alignment programs from three different algorithmic classes: algorithms using either hashing of the reference transcriptome, hashing of reads, or a compressed FM-index representation of the genome. Here, special emphasis was placed on both precision and recall and the performance for different read lengths and numbers of mismatches and indels in a read. Our results clearly showed the significant reduction in memory footprint and runtime provided by FM-index based aligners at a precision and recall comparable to the best hash table based aligners. Furthermore, the recently developed Bowtie 2 alignment algorithm shows a remarkable tolerance to both sequencing errors and indels, thus, essentially making hash-based aligners obsolete
    • …
    corecore