13,191 research outputs found

    Experiments with HP Java

    Get PDF
    We consider the possible role of Java as a language for High Performance Computing. After discussing reasons why Java may be a natural candidate for a portable parallel programming language, we describe several case studies. These cover Java socket programming, message-passing through a Java interface to MPI, and class libraries for data-parallel programming in Java

    Detailed Simulation of the Cochlea: Recent Progress Using Large Shared Memory Parallel Computers

    Get PDF
    We have developed and are refining a detailed three-dimensional computational model of the human cochlea. The model uses the immersed boundary method to calculate the fluid-structure interactions produced in response to incoming sound waves. An accurate cochlear geometry obtained from physical measurements is incorporated. The model includes a detailed and realistic description of the various elastic structures present. Initially, a macro-mechanical computational model was developed for execution on a CRAY T90 at the San Diego Supercomputing Center. This code was ported to the latest generation of shared memory high performance servers from Hewlett Packard. Using compiler generated threads and OpenMP directives, we have achieved a high degree of parallelism in the executable, which has made possible to run several large scale numerical simulation experiments to study the interesting features of the cochlear system. In this paper, we outline the methods, algorithms and software tools that were used to implement and fine tune the code, and discuss some of the simulation results

    Towards Loosely-Coupled Programming on Petascale Systems

    Full text link
    We have extended the Falkon lightweight task execution framework to make loosely coupled programming on petascale systems a practical and useful programming model. This work studies and measures the performance factors involved in applying this approach to enable the use of petascale systems by a broader user community, and with greater ease. Our work enables the execution of highly parallel computations composed of loosely coupled serial jobs with no modifications to the respective applications. This approach allows a new-and potentially far larger-class of applications to leverage petascale systems, such as the IBM Blue Gene/P supercomputer. We present the challenges of I/O performance encountered in making this model practical, and show results using both microbenchmarks and real applications from two domains: economic energy modeling and molecular dynamics. Our benchmarks show that we can scale up to 160K processor-cores with high efficiency, and can achieve sustained execution rates of thousands of tasks per second.Comment: IEEE/ACM International Conference for High Performance Computing, Networking, Storage and Analysis (SuperComputing/SC) 200

    Abstraction in directed model checking

    Get PDF
    Abstraction is one of the most important issues to cope with large and infinite state spaces in model checking and to reduce the verification efforts. The abstract system is smaller than the original one and if the abstract system satisfies a correctness specification, so does the concrete one. However, abstractions may introduce a behavior violating the specification that is not present in the original system. This paper bypasses this problem by proposing the combination of abstraction with heuristic search to improve error detection. The abstract system is explored in order to create a database that stores the exact distances from abstract states to the set of abstract error states. To check, whether or not the abstract behavior is present in the original system, effcient exploration algorithms exploit the database as a guidance

    A Comprehensive Three-Dimensional Model of the Cochlea

    Get PDF
    The human cochlea is a remarkable device, able to discern extremely small amplitude sound pressure waves, and discriminate between very close frequencies. Simulation of the cochlea is computationally challenging due to its complex geometry, intricate construction and small physical size. We have developed, and are continuing to refine, a detailed three-dimensional computational model based on an accurate cochlear geometry obtained from physical measurements. In the model, the immersed boundary method is used to calculate the fluid-structure interactions produced in response to incoming sound waves. The model includes a detailed and realistic description of the various elastic structures present. In this paper, we describe the computational model and its performance on the latest generation of shared memory servers from Hewlett Packard. Using compiler generated threads and OpenMP directives, we have achieved a high degree of parallelism in the executable, which has made possible several large scale numerical simulation experiments that study the interesting features of the cochlear system. We show several results from these simulations, reproducing some of the basic known characteristics of cochlear mechanics.Comment: 22 pages, 5 figure

    Knowledge Representation Concepts for Automated SLA Management

    Full text link
    Outsourcing of complex IT infrastructure to IT service providers has increased substantially during the past years. IT service providers must be able to fulfil their service-quality commitments based upon predefined Service Level Agreements (SLAs) with the service customer. They need to manage, execute and maintain thousands of SLAs for different customers and different types of services, which needs new levels of flexibility and automation not available with the current technology. The complexity of contractual logic in SLAs requires new forms of knowledge representation to automatically draw inferences and execute contractual agreements. A logic-based approach provides several advantages including automated rule chaining allowing for compact knowledge representation as well as flexibility to adapt to rapidly changing business requirements. We suggest adequate logical formalisms for representation and enforcement of SLA rules and describe a proof-of-concept implementation. The article describes selected formalisms of the ContractLog KR and their adequacy for automated SLA management and presents results of experiments to demonstrate flexibility and scalability of the approach.Comment: Paschke, A. and Bichler, M.: Knowledge Representation Concepts for Automated SLA Management, Int. Journal of Decision Support Systems (DSS), submitted 19th March 200
    • …
    corecore