182 research outputs found

    Designing Tactile Interfaces for Abstract Interpersonal Communication, Pedestrian Navigation and Motorcyclists Navigation

    Get PDF
    The tactile medium of communication with users is appropriate for displaying information in situations where auditory and visual mediums are saturated. There are situations where a subject's ability to receive information through either of these channels is severely restricted by the environment they are in or through any physical impairments that the subject may have. In this project, we have focused on two groups of users who need sustained visual and auditory focus in their task: Soldiers on the battle field and motorcyclists. Soldiers on the battle field use their visual and auditory capabilities to maintain awareness of their environment to guard themselves from enemy assault. One of the major challenges to coordination in a hazardous environment is maintaining communication between team members while mitigating cognitive load. Compromise in communication between team members may result in mistakes that can adversely affect the outcome of a mission. We have built two vibrotactile displays, Tactor I and Tactor II, each with nine actuators arranged in a three-by-three matrix with differing contact areas that can represent a total of 511 shapes. We used two dimensions of tactile medium, shapes and waveforms, to represent verb phrases and evaluated ability of users to perceive verb phrases the tactile code. We evaluated the effectiveness of communicating verb phrases while the users were performing two tasks simultaneously. The results showed that performing additional visual task did not affect the accuracy or the time taken to perceive tactile codes. Another challenge in coordinating Soldiers on a battle field is navigating them to respective assembly areas. We have developed HaptiGo, a lightweight haptic vest that provides pedestrians both navigational intelligence and obstacle detection capabilities. HaptiGo consists of optimally-placed vibro-tactile sensors that utilize natural and small form factor interaction cues, thus emulating the sensation of being passively guided towards the intended direction. We evaluated HaptiGo and found that it was able to successfully navigate users with timely alerts of incoming obstacles without increasing cognitive load, thereby increasing their environmental awareness. Additionally, we show that users are able to respond to directional information without training. The needs of motorcyclists are di erent from those of Soldiers. Motorcyclists' need to maintain visual and auditory situational awareness at all times is crucial since they are highly exposed on the road. Route guidance systems, such as the Garmin, have been well tested on automobilists, but remain much less safe for use by motorcyclists. Audio/visual routing systems decrease motorcyclists' situational awareness and vehicle control, and thus increase the chances of an accident. To enable motorcyclists to take advantage of route guidance while maintaining situational awareness, we created HaptiMoto, a wearable haptic route guidance system. HaptiMoto uses tactile signals to encode the distance and direction of approaching turns, thus avoiding interference with audio/visual awareness. Evaluations show that HaptiMoto is intuitive for motorcyclists, and a safer alternative to existing solutions

    Characterization, Classification, and Genesis of Seismocardiographic Signals

    Get PDF
    Seismocardiographic (SCG) signals are the acoustic and vibration induced by cardiac activity measured non-invasively at the chest surface. These signals may offer a method for diagnosing and monitoring heart function. Successful classification of SCG signals in health and disease depends on accurate signal characterization and feature extraction. In this study, SCG signal features were extracted in the time, frequency, and time-frequency domains. Different methods for estimating time-frequency features of SCG were investigated. Results suggested that the polynomial chirplet transform outperformed wavelet and short time Fourier transforms. Many factors may contribute to increasing intrasubject SCG variability including subject posture and respiratory phase. In this study, the effect of respiration on SCG signal variability was investigated. Results suggested that SCG waveforms can vary with lung volume, respiratory flow direction, or a combination of these criteria. SCG events were classified into groups belonging to these different respiration phases using classifiers, including artificial neural networks, support vector machines, and random forest. Categorizing SCG events into different groups containing similar events allows more accurate estimation of SCG features. SCG feature points were also identified from simultaneous measurements of SCG and other well-known physiologic signals including electrocardiography, phonocardiography, and echocardiography. Future work may use this information to get more insights into the genesis of SCG

    Human activity recognition for an intelligent knee orthosis

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia BiomédicaActivity recognition with body-worn sensors is a large and growing field of research. In this thesis we evaluate the possibility to recognize human activities based on data from biosignal sensors solely placed on or under an existing passive knee orthosis, which will produce the needed information to integrate sensors into the orthosis in the future. The development of active orthotic knee devices will allow population to ambulate in a more natural, efficient and less painful manner than they might with a traditional orthosis. Thus, the term ’active orthosis’ refers to a device intended to increase the ambulatory ability of a person suffering from a knee pathology by applying forces to correct the position only when necessary and thereby make usable over longer periods of time. The contribution of this work is the evaluation of the ability to recognize activities with these restrictions on sensor placement as well as providing a proof-of-concept for the development of an activity recognition system for an intelligent orthosis. We use accelerometers and a goniometer placed on the orthosis and Electromyography (EMG) sensors placed on the skin under the orthosis to measure motion and muscle activity respectively. We segment signals in motion primitives semi-automatically and apply Hidden-Markov-Models (HMM) to classify the isolated motion primitives. We discriminate between seven activities like for example walking stairs up and ascend a hill. In a user study with six participants, we evaluate the systems performance for each of the different biosignal modalities alone as well as the combinations of them. For the best performing combination, we reach an average person-dependent accuracy of 98% and a person-independent accuracy of 79%

    Methods and techniques for analyzing human factors facets on drivers

    Get PDF
    Mención Internacional en el título de doctorWith millions of cars moving daily, driving is the most performed activity worldwide. Unfortunately, according to the World Health Organization (WHO), every year, around 1.35 million people worldwide die from road traffic accidents and, in addition, between 20 and 50 million people are injured, placing road traffic accidents as the second leading cause of death among people between the ages of 5 and 29. According to WHO, human errors, such as speeding, driving under the influence of drugs, fatigue, or distractions at the wheel, are the underlying cause of most road accidents. Global reports on road safety such as "Road safety in the European Union. Trends, statistics, and main challenges" prepared by the European Commission in 2018 presented a statistical analysis that related road accident mortality rates and periods segmented by hours and days of the week. This report revealed that the highest incidence of mortality occurs regularly in the afternoons during working days, coinciding with the period when the volume of traffic increases and when any human error is much more likely to cause a traffic accident. Accordingly, mitigating human errors in driving is a challenge, and there is currently a growing trend in the proposal for technological solutions intended to integrate driver information into advanced driving systems to improve driver performance and ergonomics. The study of human factors in the field of driving is a multidisciplinary field in which several areas of knowledge converge, among which stand out psychology, physiology, instrumentation, signal treatment, machine learning, the integration of information and communication technologies (ICTs), and the design of human-machine communication interfaces. The main objective of this thesis is to exploit knowledge related to the different facets of human factors in the field of driving. Specific objectives include identifying tasks related to driving, the detection of unfavorable cognitive states in the driver, such as stress, and, transversely, the proposal for an architecture for the integration and coordination of driver monitoring systems with other active safety systems. It should be noted that the specific objectives address the critical aspects in each of the issues to be addressed. Identifying driving-related tasks is one of the primary aspects of the conceptual framework of driver modeling. Identifying maneuvers that a driver performs requires training beforehand a model with examples of each maneuver to be identified. To this end, a methodology was established to form a data set in which a relationship is established between the handling of the driving controls (steering wheel, pedals, gear lever, and turn indicators) and a series of adequately identified maneuvers. This methodology consisted of designing different driving scenarios in a realistic driving simulator for each type of maneuver, including stop, overtaking, turns, and specific maneuvers such as U-turn and three-point turn. From the perspective of detecting unfavorable cognitive states in the driver, stress can damage cognitive faculties, causing failures in the decision-making process. Physiological signals such as measurements derived from the heart rhythm or the change of electrical properties of the skin are reliable indicators when assessing whether a person is going through an episode of acute stress. However, the detection of stress patterns is still an open problem. Despite advances in sensor design for the non-invasive collection of physiological signals, certain factors prevent reaching models capable of detecting stress patterns in any subject. This thesis addresses two aspects of stress detection: the collection of physiological values during stress elicitation through laboratory techniques such as the Stroop effect and driving tests; and the detection of stress by designing a process flow based on unsupervised learning techniques, delving into the problems associated with the variability of intra- and inter-individual physiological measures that prevent the achievement of generalist models. Finally, in addition to developing models that address the different aspects of monitoring, the orchestration of monitoring systems and active safety systems is a transversal and essential aspect in improving safety, ergonomics, and driving experience. Both from the perspective of integration into test platforms and integration into final systems, the problem of deploying multiple active safety systems lies in the adoption of monolithic models where the system-specific functionality is run in isolation, without considering aspects such as cooperation and interoperability with other safety systems. This thesis addresses the problem of the development of more complex systems where monitoring systems condition the operability of multiple active safety systems. To this end, a mediation architecture is proposed to coordinate the reception and delivery of data flows generated by the various systems involved, including external sensors (lasers, external cameras), cabin sensors (cameras, smartwatches), detection models, deliberative models, delivery systems and machine-human communication interfaces. Ontology-based data modeling plays a crucial role in structuring all this information and consolidating the semantic representation of the driving scene, thus allowing the development of models based on data fusion.I would like to thank the Ministry of Economy and Competitiveness for granting me the predoctoral fellowship BES-2016-078143 corresponding to the project TRA2015-63708-R, which provided me the opportunity of conducting all my Ph. D activities, including completing an international internship.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: José María Armingol Moreno.- Secretario: Felipe Jiménez Alonso.- Vocal: Luis Mart

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic

    Computational Intelligence in Healthcare

    Get PDF
    The number of patient health data has been estimated to have reached 2314 exabytes by 2020. Traditional data analysis techniques are unsuitable to extract useful information from such a vast quantity of data. Thus, intelligent data analysis methods combining human expertise and computational models for accurate and in-depth data analysis are necessary. The technological revolution and medical advances made by combining vast quantities of available data, cloud computing services, and AI-based solutions can provide expert insight and analysis on a mass scale and at a relatively low cost. Computational intelligence (CI) methods, such as fuzzy models, artificial neural networks, evolutionary algorithms, and probabilistic methods, have recently emerged as promising tools for the development and application of intelligent systems in healthcare practice. CI-based systems can learn from data and evolve according to changes in the environments by taking into account the uncertainty characterizing health data, including omics data, clinical data, sensor, and imaging data. The use of CI in healthcare can improve the processing of such data to develop intelligent solutions for prevention, diagnosis, treatment, and follow-up, as well as for the analysis of administrative processes. The present Special Issue on computational intelligence for healthcare is intended to show the potential and the practical impacts of CI techniques in challenging healthcare applications

    Behaviour Profiling using Wearable Sensors for Pervasive Healthcare

    Get PDF
    In recent years, sensor technology has advanced in terms of hardware sophistication and miniaturisation. This has led to the incorporation of unobtrusive, low-power sensors into networks centred on human participants, called Body Sensor Networks. Amongst the most important applications of these networks is their use in healthcare and healthy living. The technology has the possibility of decreasing burden on the healthcare systems by providing care at home, enabling early detection of symptoms, monitoring recovery remotely, and avoiding serious chronic illnesses by promoting healthy living through objective feedback. In this thesis, machine learning and data mining techniques are developed to estimate medically relevant parameters from a participant‘s activity and behaviour parameters, derived from simple, body-worn sensors. The first abstraction from raw sensor data is the recognition and analysis of activity. Machine learning analysis is applied to a study of activity profiling to detect impaired limb and torso mobility. One of the advances in this thesis to activity recognition research is in the application of machine learning to the analysis of 'transitional activities': transient activity that occurs as people change their activity. A framework is proposed for the detection and analysis of transitional activities. To demonstrate the utility of transition analysis, we apply the algorithms to a study of participants undergoing and recovering from surgery. We demonstrate that it is possible to see meaningful changes in the transitional activity as the participants recover. Assuming long-term monitoring, we expect a large historical database of activity to quickly accumulate. We develop algorithms to mine temporal associations to activity patterns. This gives an outline of the user‘s routine. Methods for visual and quantitative analysis of routine using this summary data structure are proposed and validated. The activity and routine mining methodologies developed for specialised sensors are adapted to a smartphone application, enabling large-scale use. Validation of the algorithms is performed using datasets collected in laboratory settings, and free living scenarios. Finally, future research directions and potential improvements to the techniques developed in this thesis are outlined

    From insights to innovations : data mining, visualization, and user interfaces

    Get PDF
    This thesis is about data mining (DM) and visualization methods for gaining insight into multidimensional data. Novel, exploratory data analysis tools and adaptive user interfaces are developed by tailoring and combining existing DM and visualization methods in order to advance in different applications. The thesis presents new visual data mining (VDM) methods that are also implemented in software toolboxes and applied to industrial and biomedical signals: First, we propose a method that has been applied to investigating industrial process data. The self-organizing map (SOM) is combined with scatterplots using the traditional color linking or interactive brushing. The original contribution is to apply color linked or brushed scatterplots and the SOM to visually survey local dependencies between a pair of attributes in different parts of the SOM. Clusters can be visualized on a SOM with different colors, and we also present how a color coding can be automatically obtained by using a proximity preserving projection of the SOM model vectors. Second, we present a new method for an (interactive) visualization of cluster structures in a SOM. By using a contraction model, the regular grid of a SOM visualization is smoothly changed toward a presentation that shows better the proximities in the data space. Third, we propose a novel VDM method for investigating the reliability of estimates resulting from a stochastic independent component analysis (ICA) algorithm. The method can be extended also to other problems of similar kind. As a benchmarking task, we rank independent components estimated on a biomedical data set recorded from the brain and gain a reasonable result. We also utilize DM and visualization for mobile-awareness and personalization. We explore how to infer information about the usage context from features that are derived from sensory signals. The signals originate from a mobile phone with on-board sensors for ambient physical conditions. In previous studies, the signals are transformed into descriptive (fuzzy or binary) context features. In this thesis, we present how the features can be transformed into higher-level patterns, contexts, by rather simple statistical methods: we propose and test using minimum-variance cost time series segmentation, ICA, and principal component analysis (PCA) for this purpose. Both time-series segmentation and PCA revealed meaningful contexts from the features in a visual data exploration. We also present a novel type of adaptive soft keyboard where the aim is to obtain an ergonomically better, more comfortable keyboard. The method starts from some conventional keypad layout, but it gradually shifts the keys into new positions according to the user's grasp and typing pattern. Related to the applications, we present two algorithms that can be used in a general context: First, we describe a binary mixing model for independent binary sources. The model resembles the ordinary ICA model, but the summation is replaced by the Boolean operator OR and the multiplication by AND. We propose a new, heuristic method for estimating the binary mixing matrix and analyze its performance experimentally. The method works for signals that are sparse enough. We also discuss differences on the results when using different objective functions in the FastICA estimation algorithm. Second, we propose "global iterative replacement" (GIR), a novel, greedy variant of a merge-split segmentation method. Its performance compares favorably to that of the traditional top-down binary split segmentation algorithm.reviewe

    Geometry- and Accuracy-Preserving Random Forest Proximities with Applications

    Get PDF
    Many machine learning algorithms use calculated distances or similarities between data observations to make predictions, cluster similar data, visualize patterns, or generally explore the data. Most distances or similarity measures do not incorporate known data labels and are thus considered unsupervised. Supervised methods for measuring distance exist which incorporate data labels and thereby exaggerate separation between data points of different classes. This approach tends to distort the natural structure of the data. Instead of following similar approaches, we leverage a popular algorithm used for making data-driven predictions, known as random forests, to naturally incorporate data labels into similarity measures known as random forest proximities. In this dissertation, we explore previously defined random forest proximities and demonstrate their weaknesses in popular proximity-based applications. Additionally, we develop a new proximity definition that can be used to recreate the random forest’s predictions. We call these random forest-geometry-and accuracy-Preserving proximities or RF-GAP. We show by proof and empirical demonstration can be used to perfectly reconstruct the random forest’s predictions and, as a result, we argue that RF-GAP proximities provide a truer representation of the random forest’s learning when used in proximity-based applications. We provide evidence to suggest that RF-GAP proximities improve applications including imputing missing data, detecting outliers, and visualizing the data. We also introduce a new random forest proximity-based technique that can be used to generate 2- or 3-dimensional data representations which can be used as a tool to visually explore the data. We show that this method does well at portraying the relationship between data variables and the data labels. We show quantitatively and qualitatively that this method surpasses other existing methods for this task
    • …
    corecore