43 research outputs found

    An experimental study on latency-aware and self-adaptive service chaining orchestration in distributed NFV and SDN infrastructures

    Get PDF
    Network Function Virtualization (NFV) and Software Defined Networking (SDN) changed radically the way 5G networks will be deployed and services will be delivered to vertical applications (i.e., through dynamic chaining of virtualized functions deployed in distributed clouds to best address latency requirements). In this work, we present a service chaining orchestration system, namely LASH-5G, running on top of an experimental set-up that reproduces a typical 5G network deployment with virtualized functions in geographically distributed edge clouds. LASH-5G is built upon a joint integration effort among different orchestration solutions and cloud deployments and aims at providing latency-aware, adaptive and reliable service chaining orchestration across clouds and network resource domains interconnected through SDN. In this paper, we provide details on how this orchestration system has been deployed and it is operated on top of the experimentation infrastructure provided within the Fed4FIRE+ facility and we present performance results assessing the effectiveness of the proposed orchestration approach

    Integrating a smart city testbed into a large-scale heterogeneous federation of future internet experimentation facilities: the SmartSantander approach

    Get PDF
    For some years already, there has been a plethora of research initiatives throughout the world that have deployed diverse experimentation facilities for Future Internet technologies research and development. While access to these testbeds has been sometimes restricted to the specific research community supporting them, opening them to different communities can not only help those infrastructures to achieve a wider impact, but also to better identify new possibilities based on novel considerations brought by those external users. On top of the individual testbeds, supporting experiments that employs several of them in a combined and seamless fashion has been one of the main objectives of different transcontinental research initiatives, such as FIRE in Europe or GENI in United States. In particular, Fed4FIRE project and its continuation, Fed4FIRE+, have emerged as "best-in-town" projects to federate heterogeneous experimentation platforms. This paper presents the most relevant aspects of the integration of a large scale testbed on the IoT domain within the Fed4FIRE+ federation. It revolves around the adaptation carried out on the SmartSantander smart city testbed. Additionally, the paper offers an overview of the different federation models that Fed4FIRE+ proposes to testbed owners in order to provide a complete view of the involved technologies. The paper is also presenting a survey of how several specific research platforms from different experimentation domains have fulfilled the federation task following Fed4FIRE+ concepts.This work was partially funded by the European project Federation for FIRE Plus (Fed4FIRE+) from the European Union’s Horizon 2020 Programme with the Grant Agreement No. 732638 and by the Spanish Government (MINECO) by means of the projects ADVICE: Dynamic provisioning of connectivity in high density 5G wireless scenarios (TEC2015-71329-C2-1-R) and Future Internet Enabled Resilient Cities (FIERCE)

    5G-MEC Testbeds for V2X Applications

    Get PDF
    Fifth-generation (5G) mobile networks fulfill the demands of critical applications, such as Ultra-Reliable Low-Latency Communication (URLLC), particularly in the automotive industry. Vehicular communication requires low latency and high computational capabilities at the network’s edge. To meet these requirements, ETSI standardized Multi-access Edge Computing (MEC), which provides cloud computing capabilities and addresses the need for low latency. This paper presents a generalized overview for implementing a 5G-MEC testbed for Vehicle-to-Everything (V2X) applications, as well as the analysis of some important testbeds and state-of-the-art implementations based on their deployment scenario, 5G use cases, and open source accessibility. The complexity of using the testbeds is also discussed, and the challenges researchers may face while replicating and deploying them are highlighted. Finally, the paper summarizes the tools used to build the testbeds and addresses open issues related to implementing the testbeds.publishedVersio

    Integração de funções de rede virtualizadas e funções de rede físicas

    Get PDF
    Network Functions Virtualization (NFV) and Software Defined Networking (SDN) have been in the center of network evolution, promising a more flexible and efficient way of managing networks through the on-demand instantiation of network functions (NFs) and reconfigurability of the network as necessary. Nevertheless, as new mechanisms are developed, such technologies require testing before their adoption into real-world deployments. This is where this dissertation contributes, by proposing and evaluating a system architecture that integrates a physical wireless testbed with a cloud-based environment. This allows physical wireless nodes to become part of the cloud environment, enabling its use and configuration as virtual NFs (VNFs). Results showcased the system feasibility, with the testbed being able to instantiate on-demand virtual and physical NFs, in the physical wireless nodes and in an OpenStack data-center.A Virtualização de Funções de Rede e as Redes Definidas por Software têm estado no centro da evolução das redes, prometendo uma forma mais flexível e eficiente de as gerenciar através da instanciação on-demand de Funções de Rede e da sua reconfiguração conforme o necessário. No entanto, à medida que novos mecanismos são desenvolvidos, é também necessário a realização de testes sobre estas tecnologias antes destas serem adotadas em implementações em contexto real. É aqui que esta dissertação contribui, propondo e avaliando uma arquitetura de sistema que integra um testbed físico sem fios, com um ambiente baseado em nuvem. Isto permite que os nós sem fios físicos se tornem parte do ambiente de nuvem, permitindo o seu uso e configuração como Funções de Rede Virtuais. Os resultados demonstraram a viabilidade do sistema, dada a capacidade da testbed em instanciar Funções de Rede virtuais e físicas quando requisitadas tanto nos nós sem fios físicos quanto no servidor OpenStack.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore