12,105 research outputs found

    Trajectories in phase diagrams, growth processes and computational complexity: how search algorithms solve the 3-Satisfiability problem

    Full text link
    Most decision and optimization problems encountered in practice fall into one of two categories with respect to any particular solving method or algorithm: either the problem is solved quickly (easy) or else demands an impractically long computational effort (hard). Recent investigations on model classes of problems have shown that some global parameters, such as the ratio between the constraints to be satisfied and the adjustable variables, are good predictors of problem hardness and, moreover, have an effect analogous to thermodynamical parameters, e.g. temperature, in predicting phases in condensed matter physics [Monasson et al., Nature 400 (1999) 133-137]. Here we show that changes in the values of such parameters can be tracked during a run of the algorithm defining a trajectory through the parameter space. Focusing on 3-Satisfiability, a recognized representative of hard problems, we analyze trajectories generated by search algorithms using growth processes statistical physics. These trajectories can cross well defined phases, corresponding to domains of easy or hard instances, and allow to successfully predict the times of resolution.Comment: Revtex file + 4 eps figure

    Minimizing energy below the glass thresholds

    Full text link
    Focusing on the optimization version of the random K-satisfiability problem, the MAX-K-SAT problem, we study the performance of the finite energy version of the Survey Propagation (SP) algorithm. We show that a simple (linear time) backtrack decimation strategy is sufficient to reach configurations well below the lower bound for the dynamic threshold energy and very close to the analytic prediction for the optimal ground states. A comparative numerical study on one of the most efficient local search procedures is also given.Comment: 12 pages, submitted to Phys. Rev. E, accepted for publicatio

    Automated sequence and motion planning for robotic spatial extrusion of 3D trusses

    Full text link
    While robotic spatial extrusion has demonstrated a new and efficient means to fabricate 3D truss structures in architectural scale, a major challenge remains in automatically planning extrusion sequence and robotic motion for trusses with unconstrained topologies. This paper presents the first attempt in the field to rigorously formulate the extrusion sequence and motion planning (SAMP) problem, using a CSP encoding. Furthermore, this research proposes a new hierarchical planning framework to solve the extrusion SAMP problems that usually have a long planning horizon and 3D configuration complexity. By decoupling sequence and motion planning, the planning framework is able to efficiently solve the extrusion sequence, end-effector poses, joint configurations, and transition trajectories for spatial trusses with nonstandard topologies. This paper also presents the first detailed computation data to reveal the runtime bottleneck on solving SAMP problems, which provides insight and comparing baseline for future algorithmic development. Together with the algorithmic results, this paper also presents an open-source and modularized software implementation called Choreo that is machine-agnostic. To demonstrate the power of this algorithmic framework, three case studies, including real fabrication and simulation results, are presented.Comment: 24 pages, 16 figure
    • …
    corecore