21,479 research outputs found

    Experiments in the coordination of large groups of robots

    Get PDF
    The use of large groups of robots, generally called swarms, has gained increased attention in recent years. In this paper, we present and experimentally validate an algorithm that allows a swarm of robots to navigate in an environment containing unknown obstacles. A coordination mechanism based on dynamic role assignment and local communication is used to help robots that may get stuck in regions of local minima. Experiments were performed using both a realistic simulator and a group of real robots and the obtained results showed the feasibility of the proposed approach

    Traffic control for a swarm of robots:avoiding group conflicts

    Get PDF
    A very common problem in the navigation of robotic swarms is when groups of robots move into opposite directions, causing congestion situations that may compromise performance. In this paper, we propose a distributed coordination algorithm to alleviate this type of congestion. By working collaboratively, and warning their teammates about a congestion risk, robots are able to coordinate themselves to avoid these situations. We executed simulations and real experiments to study the performance and effectiveness of the proposed algorithm. Results show that the algorithm allows the swarm to navigate in a smoother and more efficient fashion, and is suitable for large groups of robots

    Traffic control for a swarm of robots:avoiding target congestion

    Get PDF
    One of the main problems in the navigation of robotic swarms is when several robots try to reach the same target at the same time, causing congestion situations that may compromise performance. In this paper, we propose a distributed coordination algorithm to alleviate this type of congestion. Using local sensing and communication, and controlling their actions using a probabilistic finite state machine, robots are able to coordinate themselves to avoid these situations. Simulations and real experiments were executed to study the performance and effectiveness of the proposed algorithm. Results show that the algorithm allows the swarm to have a more efficient and smoother navigation and is suitable for large groups of robots

    A macroscopic analytical model of collaboration in distributed robotic systems

    Get PDF
    In this article, we present a macroscopic analytical model of collaboration in a group of reactive robots. The model consists of a series of coupled differential equations that describe the dynamics of group behavior. After presenting the general model, we analyze in detail a case study of collaboration, the stick-pulling experiment, studied experimentally and in simulation by Ijspeert et al. [Autonomous Robots, 11, 149-171]. The robots' task is to pull sticks out of their holes, and it can be successfully achieved only through the collaboration of two robots. There is no explicit communication or coordination between the robots. Unlike microscopic simulations (sensor-based or using a probabilistic numerical model), in which computational time scales with the robot group size, the macroscopic model is computationally efficient, because its solutions are independent of robot group size. Analysis reproduces several qualitative conclusions of Ijspeert et al.: namely, the different dynamical regimes for different values of the ratio of robots to sticks, the existence of optimal control parameters that maximize system performance as a function of group size, and the transition from superlinear to sublinear performance as the number of robots is increased

    Analysis of Dynamic Task Allocation in Multi-Robot Systems

    Full text link
    Dynamic task allocation is an essential requirement for multi-robot systems operating in unknown dynamic environments. It allows robots to change their behavior in response to environmental changes or actions of other robots in order to improve overall system performance. Emergent coordination algorithms for task allocation that use only local sensing and no direct communication between robots are attractive because they are robust and scalable. However, a lack of formal analysis tools makes emergent coordination algorithms difficult to design. In this paper we present a mathematical model of a general dynamic task allocation mechanism. Robots using this mechanism have to choose between two types of task, and the goal is to achieve a desired task division in the absence of explicit communication and global knowledge. Robots estimate the state of the environment from repeated local observations and decide which task to choose based on these observations. We model the robots and observations as stochastic processes and study the dynamics of the collective behavior. Specifically, we analyze the effect that the number of observations and the choice of the decision function have on the performance of the system. The mathematical models are validated in a multi-robot multi-foraging scenario. The model's predictions agree very closely with experimental results from sensor-based simulations.Comment: Preprint version of the paper published in International Journal of Robotics, March 2006, Volume 25, pp. 225-24

    Teams organization and performance analysis in autonomous human-robot teams

    Get PDF
    This paper proposes a theory of human control of robot teams based on considering how people coordinate across different task allocations. Our current work focuses on domains such as foraging in which robots perform largely independent tasks. The present study addresses the interaction between automation and organization of human teams in controlling large robot teams performing an Urban Search and Rescue (USAR) task. We identify three subtasks: perceptual search-visual search for victims, assistance-teleoperation to assist robot, and navigation-path planning and coordination. For the studies reported here, navigation was selected for automation because it involves weak dependencies among robots making it more complex and because it was shown in an earlier experiment to be the most difficult. This paper reports an extended analysis of the two conditions from a larger four condition study. In these two "shared pool" conditions Twenty four simulated robots were controlled by teams of 2 participants. Sixty paid participants (30 teams) were recruited to perform the shared pool tasks in which participants shared control of the 24 UGVs and viewed the same screens. Groups in the manual control condition issued waypoints to navigate their robots. In the autonomy condition robots generated their own waypoints using distributed path planning. We identify three self-organizing team strategies in the shared pool condition: joint control operators share full authority over robots, mixed control in which one operator takes primary control while the other acts as an assistant, and split control in which operators divide the robots with each controlling a sub-team. Automating path planning improved system performance. Effects of team organization favored operator teams who shared authority for the pool of robots. © 2010 ACM
    • …
    corecore