1,694 research outputs found

    Interpolant-Based Transition Relation Approximation

    Full text link
    In predicate abstraction, exact image computation is problematic, requiring in the worst case an exponential number of calls to a decision procedure. For this reason, software model checkers typically use a weak approximation of the image. This can result in a failure to prove a property, even given an adequate set of predicates. We present an interpolant-based method for strengthening the abstract transition relation in case of such failures. This approach guarantees convergence given an adequate set of predicates, without requiring an exact image computation. We show empirically that the method converges more rapidly than an earlier method based on counterexample analysis.Comment: Conference Version at CAV 2005. 17 Pages, 9 Figure

    A Short Counterexample Property for Safety and Liveness Verification of Fault-tolerant Distributed Algorithms

    Full text link
    Distributed algorithms have many mission-critical applications ranging from embedded systems and replicated databases to cloud computing. Due to asynchronous communication, process faults, or network failures, these algorithms are difficult to design and verify. Many algorithms achieve fault tolerance by using threshold guards that, for instance, ensure that a process waits until it has received an acknowledgment from a majority of its peers. Consequently, domain-specific languages for fault-tolerant distributed systems offer language support for threshold guards. We introduce an automated method for model checking of safety and liveness of threshold-guarded distributed algorithms in systems where the number of processes and the fraction of faulty processes are parameters. Our method is based on a short counterexample property: if a distributed algorithm violates a temporal specification (in a fragment of LTL), then there is a counterexample whose length is bounded and independent of the parameters. We prove this property by (i) characterizing executions depending on the structure of the temporal formula, and (ii) using commutativity of transitions to accelerate and shorten executions. We extended the ByMC toolset (Byzantine Model Checker) with our technique, and verified liveness and safety of 10 prominent fault-tolerant distributed algorithms, most of which were out of reach for existing techniques.Comment: 16 pages, 11 pages appendi

    Phononics: Manipulating heat flow with electronic analogs and beyond

    Full text link
    The form of energy termed heat that typically derives from lattice vibrations, i.e. the phonons, is usually considered as waste energy and, moreover, deleterious to information processing. However, with this colloquium, we attempt to rebut this common view: By use of tailored models we demonstrate that phonons can be manipulated like electrons and photons can, thus enabling controlled heat transport. Moreover, we explain that phonons can be put to beneficial use to carry and process information. In a first part we present ways to control heat transport and how to process information for physical systems which are driven by a temperature bias. Particularly, we put forward the toolkit of familiar electronic analogs for exercising phononics; i.e. phononic devices which act as thermal diodes, thermal transistors, thermal logic gates and thermal memories, etc.. These concepts are then put to work to transport, control and rectify heat in physical realistic nanosystems by devising practical designs of hybrid nanostructures that permit the operation of functional phononic devices and, as well, report first experimental realizations. Next, we discuss yet richer possibilities to manipulate heat flow by use of time varying thermal bath temperatures or various other external fields. These give rise to a plenty of intriguing phononic nonequilibrium phenomena as for example the directed shuttling of heat, a geometrical phase induced heat pumping, or the phonon Hall effect, that all may find its way into operation with electronic analogs.Comment: 24 pages, 16 figures, modified title and revised, accepted for publication in Rev. Mod. Phy

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    • …
    corecore