3,091 research outputs found

    Solving morphological analogies: from retrieval to generation

    Full text link
    Analogical inference is a remarkable capability of human reasoning, and has been used to solve hard reasoning tasks. Analogy based reasoning (AR) has gained increasing interest from the artificial intelligence community and has shown its potential in multiple machine learning tasks such as classification, decision making and recommendation with competitive results. We propose a deep learning (DL) framework to address and tackle two key tasks in AR: analogy detection and solving. The framework is thoroughly tested on the Siganalogies dataset of morphological analogical proportions (APs) between words, and shown to outperform symbolic approaches in many languages. Previous work have explored the behavior of the Analogy Neural Network for classification (ANNc) on analogy detection and of the Analogy Neural Network for retrieval (ANNr) on analogy solving by retrieval, as well as the potential of an autoencoder (AE) for analogy solving by generating the solution word. In this article we summarize these findings and we extend them by combining ANNr and the AE embedding model, and checking the performance of ANNc as an retrieval method. The combination of ANNr and AE outperforms the other approaches in almost all cases, and ANNc as a retrieval method achieves competitive or better performance than 3CosMul. We conclude with general guidelines on using our framework to tackle APs with DL.Comment: Preprint submitted to Springer special Issue in Annals of Mathematics and Artificial Intelligence: Mathematical Foundations of analogical reasoning and application

    Classifying and completing word analogies by machine learning

    Get PDF
    Analogical proportions are statements of the form ‘a is to b as c is to d’, formally denoted a:b::c:d. They are the basis of analogical reasoning which is often considered as an essential ingredient of human intelligence. For this reason, recognizing analogies in natural language has long been a research focus within the Natural Language Processing (NLP) community. With the emergence of word embedding models, a lot of progress has been made in NLP, essentially assuming that a word analogy like man:king::woman:queen is an instance of a parallelogram within the underlying vector space. In this paper, we depart from this assumption to adopt a machine learning approach, i.e., learning a substitute of the parallelogram model. To achieve our goal, we first review the formal modeling of analogical proportions, highlighting the properties which are useful from a machine learning perspective. For instance, the postulates supposed to govern such proportions entail that when a:b::c:d holds, then seven permutations of a,b,c,d still constitute valid analogies. From a machine learning perspective, this provides guidelines to build training sets of positive and negative examples. Taking into account these properties for augmenting the set of positive and negative examples, we first implement word analogy classifiers using various machine learning techniques, then we approximate by regression an analogy completion function, i.e., a way to compute the missing word when we have the three other ones. Using a GloVe embedding, classifiers show very high accuracy when recognizing analogies, improving state of the art on word analogy classification. Also, the regression processes usually lead to much more successful analogy completion than the ones derived from the parallelogram assumption. © 202

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers
    • …
    corecore