121 research outputs found

    Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots

    Get PDF
    Morphogenesis, the biological developmental process of multicellular organisms, is a robust self-organising mechanism for pattern formation governed by gene regulatory networks (GRNs). Recent findings suggest that GRNs often show the use of frequently recurring patterns termed network motifs. Inspired by these biological studies, this paper proposes a morphogenetic approach to pattern formation for swarm robots to entrap targets based on an evolving hierarchical gene regulatory network (EH-GRN). The proposed EH-GRN consists of two layers: The upper layer is for adaptive pattern generation where the GRN model is evolved by basic network motifs, and the lower layer is responsible for driving robots to the target pattern generated by the upper layer. Obstacle information is introduced as one of environmental inputs along with that of targets in order to generate patterns adaptive to unknown environmental changes. Besides, splitting or merging of multiple patterns resulting from target movement is addressed by the inherent feature of the upper layer and the k-means clustering algorithm. Numerical simulations have been performed for scenarios containing static/moving targets and obstacles to validate the effectiveness and benefit of the proposed approach for complex shape generation in dynamic environments

    Self-organised Aggregation in Swarms of Robots with Informed Robots

    Get PDF

    Sparse robot swarms: Moving swarms to real-world applications

    Get PDF
    Robot swarms are groups of robots that each act autonomously based on only local perception and coordination with neighbouring robots. While current swarm implementations can be large in size (e.g. 1000 robots), they are typically constrained to working in highly controlled indoor environments. Moreover, a common property of swarms is the underlying assumption that the robots act in close proximity of each other (e.g. 10 body lengths apart), and typically employ uninterrupted, situated, close-range communication for coordination. Many real-world applications, including environmental monitoring and precision agriculture, however, require scalable groups of robots to act jointly over large distances (e.g. 1000 body lengths), rendering the use of dense swarms impractical. Using a dense swarm for such applications would be invasive to the environment and unrealistic in terms of mission deployment, maintenance and post-mission recovery. To address this problem, we propose the sparse swarm concept, and illustrate its use in the context of four application scenarios. For one scenario, which requires a group of rovers to traverse, and monitor, a forest environment, we identify the challenges involved at all levels in developing a sparse swarm—from the hardware platform to communication-constrained coordination algorithms—and discuss potential solutions. We outline open questions of theoretical and practical nature, which we hope will bring the concept of sparse swarms to fruition

    Swarm robotics:design and implementation

    Get PDF
    This project presents a swarming and herding behaviour using simple robots. The main goal is to demonstrate the applicability of artificial intelligence (AI) in simple robotics that can then be scaled to industrial and consumer markets to further the ability of automation. AI can be achieved in many different ways; this paper explores the possible platforms on which to build a simple AI robots from consumer grade microcontrollers. Emphasis on simplicity is the main focus of this paper. Cheap and 8 bit microcontrollers were used as the brain of each robot in a decentralized swarm environment were each robot is autonomous but still a part of the whole. These simple robots don’t communicate directly with each other. They will utilize simple IR sensors to sense each other and simple limit switches to sense other obstacles in their environment. Their main objective is to assemble at certain location after initial start from random locations, and after converging they would move as a single unit without collisions. Using readily available microcontrollers and simple circuit design, semiconsistent swarming behaviour was achieved. These robots don’t follow a set path but will react dynamically to different scenarios, guided by their simple AI algorithm
    • …
    corecore