348 research outputs found

    Chartopolis - A Self Driving Car Test Bed

    Get PDF
    abstract: This thesis presents an autonomous vehicle test bed which can be used to conduct studies on the interaction between human-driven vehicles and autonomous vehicles on the road. The test bed will make use of a fleet of robots which is a microcosm of an autonomous vehicle performing all the vital tasks like lane following, traffic signal obeying and collision avoidance with other vehicles on the road. The robots use real-time image processing and closed-loop control techniques to achieve automation. The testbed also features a manual control mode where a user can choose to control the car with a joystick by viewing a video relayed to the control station. Stochastic rogue vehicle processes will be introduced into the system which will emulate random behaviors in an autonomous vehicle. The test bed was experimented to perform a comparative study of driving capabilities of the miniature self-driving car and a human driver.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    Sensors and Technologies in Spain: State-of-the-Art

    Get PDF
    The aim of this special issue was to provide a comprehensive view on the state-of-the-art sensor technology in Spain. Different problems cause the appearance and development of new sensor technologies and vice versa, the emergence of new sensors facilitates the solution of existing real problems. [...

    Plume Analysis and Detection

    Get PDF
    This work involves the design and implementation of a gas-sensing mobile robot as an experimental tool to reconstruct a carbon dioxide plume in real-time based on concentration gradient and local wind speed measurements. The autonomous robot, an iRobot Create 2, achieves navigation through an embedded micro-controller using on-board sensors and various sensor fusion methods. A mass flow controller and diffuser are used to dependably generate a plume that simulates a point source. A base station reconstructs the plume via a state estimator through data from the robot and transmits commands to guide it into spatial regions of interest. This method has applicability for unmanned vehicles tracking emissions of contaminants and their effects in the environment

    An inertial motion capture framework for constructing body sensor networks

    Get PDF
    Motion capture is the process of measuring and subsequently reconstructing the movement of an animated object or being in virtual space. Virtual reconstructions of human motion play an important role in numerous application areas such as animation, medical science, ergonomics, etc. While optical motion capture systems are the industry standard, inertial body sensor networks are becoming viable alternatives due to portability, practicality and cost. This thesis presents an innovative inertial motion capture framework for constructing body sensor networks through software environments, smartphones and web technologies. The first component of the framework is a unique inertial motion capture software environment aimed at providing an improved experimentation environment, accompanied by programming scaffolding and a driver development kit, for users interested in studying or engineering body sensor networks. The software environment provides a bespoke 3D engine for kinematic motion visualisations and a set of tools for hardware integration. The software environment is used to develop the hardware behind a prototype motion capture suit focused on low-power consumption and hardware-centricity. Additional inertial measurement units, which are available commercially, are also integrated to demonstrate the functionality the software environment while providing the framework with additional sources for motion data. The smartphone is the most ubiquitous computing technology and its worldwide uptake has prompted many advances in wearable inertial sensing technologies. Smartphones contain gyroscopes, accelerometers and magnetometers, a combination of sensors that is commonly found in inertial measurement units. This thesis presents a mobile application that investigates whether the smartphone is capable of inertial motion capture by constructing a novel omnidirectional body sensor network. This thesis proposes a novel use for web technologies through the development of the Motion Cloud, a repository and gateway for inertial data. Web technologies have the potential to replace motion capture file formats with online repositories and to set a new standard for how motion data is stored. From a single inertial measurement unit to a more complex body sensor network, the proposed architecture is extendable and facilitates the integration of any inertial hardware configuration. The Motion Cloud’s data can be accessed through an application-programming interface or through a web portal that provides users with the functionality for visualising and exporting the motion data

    Localization of Autonomous Vehicles in Urban Environments

    Full text link
    The future of applications such as last-mile delivery, infrastructure inspection and surveillance bets big on employing small autonomous drones and ground robots in cluttered urban settings where precise positioning is critical. However, when navigating close to buildings, GPS-based localisation of robotic platforms is noisy due to obscured reception and multi-path reflection. Localisation methods using introspective sensors like monocular and stereo cameras mounted on the platforms offer a better alternative as they are suitable for both indoor and outdoor operations. However, the inherent drift in the estimated trajectory is often evident in the 7 degrees of freedom that captures scaling, rotation and translation motion, and needs to be corrected. The theme of the thesis is to use a pre-existing 3D model to supplement the pose estimation from a visual navigation system, reducing incremental drift and thereby improving localisation accuracy. The novel framework developed for the monocular camera first extracts the geometric relationship between the pixels of the calibrated camera and the 3D points on the model. These geometric constraints, when used in addition to the relative pose constraints typically used in Simultaneous Localisation and Mapping (SLAM) algorithms, provide superior trajectory estimation. Further, scale drift correction is proposed using a novel SIM3SIM_3 optimisation procedure and successfully demonstrated using a unique dataset that embodies many urban localisation challenges. Techniques developed for Stereo camera localisation aligns the textured 3D stereo scans with respect to a 3D model and estimates the associated camera pose. The idea is to solve the image registration problem between the projection of the 3D scan and images whose poses are accurately known with respect to the 3D model. The 2D motion parameters are then mapped to the 3D space for camera pose estimation. Novel image registration techniques are developed which use image edge information combined with traditional approaches to show successful results
    corecore