10 research outputs found

    Micro-Electro Discharge Machining: Principles, Recent Advancements and Applications

    Get PDF
    Micro electrical discharge machining (micro-EDM) is a thermo-electric and contactless process most suited for micro-manufacturing and high-precision machining, especially when difficult-to-cut materials, such as super alloys, composites, and electro conductive ceramics, are processed. Many industrial domains exploit this technology to fabricate highly demanding components, such as high-aspect-ratio micro holes for fuel injectors, high-precision molds, and biomedical parts.Moreover, the continuous trend towards miniaturization and high precision functional components boosted the development of control strategies and optimization methodologies specifically suited to address the challenges in micro- and nano-scale fabrication.This Special Issue showcases 12 research papers and a review article focusing on novel methodological developments on several aspects of micro electrical discharge machining: machinability studies of hard materials (TiNi shape memory alloys, Si3N4–TiN ceramic composite, ZrB2-based ceramics reinforced with SiC fibers and whiskers, tungsten-cemented carbide, Ti-6Al-4V alloy, duplex stainless steel, and cubic boron nitride), process optimization adopting different dielectrics or electrodes, characterization of mechanical performance of processed surface, process analysis, and optimization via discharge pulse-type discrimination, hybrid processes, fabrication of molds for inflatable soft microactuators, and implementation of low-cost desktop micro-EDM system

    Modeling and Optimization of Micro-EDM Operation for Fabrication of Micro Holes

    Get PDF
    Based on the experimental results, an analysis was made to identify the performance of various electrodes during fabrication of micro holes considering Inconel 718 as well as titanium as workpiece materials. It was found that that platinum followed by graphite and copper as electrode material exhibited higher MRR for both the workpiece materials but on the other hand platinum showed higher values of OC, RCL and TA respectively when compared to graphite and copper. The variation of temperature distribution in radial and depth direction with different process parameters has been determined for Inconel 718 and Titanium 5. Theoretical cavity volume was calculated for different process parameter settings for both workpiece materials and it was found that Titanium 5 exhibited higher cavity volume then Inconel 718. This research work offers new insights into the performance of micro-µ-EDM of Inconel 718 and Titanium5 using different electrodes. The optimum process parameters have been identified to determine multi-objective machinability criteria such as MRR, angle of taper of micro-hole, the thickness of recast-layer and overcut for fabrication of micro-holes

    Powder-mixed Electric Discharge Machining (PMEDM) of Inconel 625

    Get PDF
    In recent times, nickel-based super alloys are widely used in aerospace, chemical and marine industries owing to their supreme ability to retain the mechanical properties at elevated temperature in combination with remarkable resistance to corrosion. Some of the properties of these alloys such as low thermal conductivity, strain hardening tendency, chemical affinity and presence of hard and abrasives phases in the microstructure render these materials very difficult-to-cut using conventional machining processes. Therefore, the aim of the current research is set to improve the productivity and surface integrity of machined surface of Inconel 625 (a nickel-based super alloy) by impregnating powder particles such as graphite, aluminum and silicon to kerosene dielectric during electric discharge machining (EDM). Initially, temperature distribution, material removal rate (MRR) and residual stress were predicted through numerical modelling of powder-mixed EDM (PMEDM) process. In the experimental investigation, particle size analysis of the as-received powder particles was carried out to identify the distribution of particles. X-ray diffraction (XRD) analysis of particles indicated the presence of various phases including small amount of impurities. An experimental setup was developed and integrated with the existing EDM system for carrying out PMEDM process. The experiments were planned and conducted by varying five different parameters such as powder concentration, peak current, pulse-on time, duty cycle and gap voltage according to the central composite deign (CCD) of response surface methodology (RSM). Effects of these parameters along with powder concentration were investigated on various EDM characteristics such as material removal rate (MRR), radial overcut (ROC) and surface integrity aspects including surface crack density (SCD), surface roughness (SR), altered layer thickness (ALT), microhardness of surface and sub-surface regions, chemical and metallurgical alterations of the machined surface and residual stress. Results clearly indicated that addition of powder to dielectric has significantly improved MRR and surface integrity compared to pure dielectric. Among the powders used, graphite has resulted in highest MRR, lowest SCD, least ALT, least microhardness of surface and sub-surface regions. Least ROC, lowest surface roughness and least residual stress were obtained using silicon powder. Aluminum performed well in terms of MRR at low concentration range (upto 6 g/l).Therefore, optimal process performance under a given operating condition depends on judicious selection of powder materials, their size, concentration and process parameters

    Multi-objective optimisation and analysis of EDM of AISI P20 tool steel

    Get PDF
    Electric Discharge Machining (EDM) is one of the non traditional machining processes used to produce critical shape on hard or brittle conductive materials and it can also be successfully applied on materials that are extremely difficult-to-machine using traditional machining processes. The experimental investigation of EDM process parameters is of utter importance in order to improve the productivity, surface integrity and quality characteristics. An efficient method for determining the optimum process parameters for multiple performance characteristics, through various multi-optimisation techniques from the experiment trials, is a necessity of the present industry. The work piece material for the current research work was AISI P20 tool steel and a cylindrical copper electrode was used with lateral flushing of dielectric fluid during the first phase of the study. AISI P20 tool steel has growing range of applications like in plastic moulds, frames for plastic pressure dies, hydro forming tools, which offer difficulty in conventional machining in hardened condition. Influence of various process parameters on MRR, TWR and OC has been investigated during EDMof AISI P20 tool steel. Different multi-objective optimisation techniques such as grey-Taguchi and fuzzy logic combined with Response Surface Methodology (RSM) have been utilized in order to achieve optimal combinations of EDM parameters like discharge current, pulse-on time, work time, lift time, and inter electrode gap which would result in maximum MRR as well as minimum TWR and OC. Working time did not have any influence on performance measures of EDM, while other parameters had significant effect. Both grey relation analysis and fuzzy logic technique have been implemented to convert multiple responses in EDM into a single one and optimise the above responses. Finally, respective confirmation tests were carried out to obtain optimal process parameters

    Studies on Some Aspects of Multi-objective Optimization: A Case Study of Electrical Discharge Machining Process

    Get PDF
    Electrical Discharge Machining (EDM) finds extensive application in manufacturing of dies, molds and critical parts used in the automobile and other industries. The present study investigates the effects of different electrodes, deep cryogenic treatment of tools subjected to different soaking duration and a hybrid approach of powder mixed EDM of cryogenically treated electrodes on machinability of Inconel 718 super alloy. Inconel 718 has been used as the work material owing to its extensive application in aerospace industries. A Box– Behnken design of response surface methodology (RSM) has been adopted to estimate the effect of machining parameters on the performance measures. The machining efficiency of the process is evaluated in terms of material removal rate (MRR), electrode wear ratio (EWR), surface roughness, radial overcut and white layer thickness which are function of process variables viz. open circuit voltage, discharge current, pulse-on-time, duty factor and flushing pressure. In this work, a novel multi-objective particle swarm optimization algorithm (MOPSO) has been proposed to get the Pareto-optimal solution. Mutation operator, predominantly used in genetic algorithm, has been introduced in the MOPSO algorithm to avoid premature convergence and to improve the solution quality. To avoid subjectiveness and impreciseness in the decision making, the Pareto-optimal solutions obtained through MOPSO have been ranked by the composite scores obtained through maximum deviation theory (MDT). Finally, a thermal model based on finite element method has been proposed to predict the MRR and tool wear rate (TWR) when work piece is machined with variety of electrode materials. A coupled thermo-structural model has been also proposed to estimate the residual stresses. The numerical models were validated through experimentations. Parametric study is carried out on the proposed model to understand the influence of important process parameters on the performance measures. The study offers useful insight into controlling the machining parameters to improve the machining efficiency of the EDMed components

    Advanced Materials Technology

    Get PDF
    Composites, polymer science, metallic materials (aluminum, titanium, and superalloys), materials processing technology, materials durability in the aerospace environment, ceramics, fatigue and fracture mechanics, tribology, and nondestructive evaluation (NDE) are discussed. Research and development activities are introduced to the nonaerospace industry. In order to provide a convenient means to help transfer aerospace technology to the commercial mainstream in a systematic manner

    Technologies of Coatings and Surface Hardening for Tool Industry

    Get PDF
    The innovative coating and surface hardening technologies developed in recent years allow us to obtain practically any physical–mechanical or crystal–chemical complex properties of the metalworking tool surface layer. Today, the scientific approach to improving the operational characteristics of the tool surface layers produced from traditional tools industrial materials is a highly costly and long-lasting process. Different technological techniques, such as coatings (physical and chemical methods), surface hardening and alloying (chemical-thermal treatment, implantation), a combination of the listed methods, and other solutions are used for this. This edition aims to provide a review of the current state of the research and developments in the field of coatings and surface hardening technologies for cutting and die tools that can ensure a substantial increase of the work resource and reliability of the tool, an increase in productivity of machining, accuracy, and quality of the machined products, reduction in the material capacity of the production, and other important manufacturing factors. In doing so, the main emphasis should be on the results of the engineering works that have had a prosperous approbation in a laboratory or real manufacturing conditions

    Welding Processes

    Get PDF
    Despite the wide availability of literature on welding processes, a need exists to regularly update the engineering community on advancements in joining techniques of similar and dissimilar materials, in their numerical modeling, as well as in their sensing and control. In response to InTech's request to provide undergraduate and graduate students, welding engineers, and researchers with updates on recent achievements in welding, a group of 34 authors and co-authors from 14 countries representing five continents have joined to co-author this book on welding processes, free of charge to the reader. This book is divided into four sections: Laser Welding; Numerical Modeling of Welding Processes; Sensing of Welding Processes; and General Topics in Welding

    Second Aerospace Environmental Technology Conference

    Get PDF
    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards
    corecore