44 research outputs found

    Universal measurement apparatus controlled by quantum software

    Full text link
    We propose a quantum device that can approximate any projective measurement on a qubit. The desired measurement basis is selected by the quantum state of a "program register". The device is optimized with respect to maximal average fidelity (assuming uniform distribution of measurement bases). An interesting result is that if one uses two qubits in the same state as a program the average fidelity is higher than if he/she takes the second program qubit in the orthogonal state (with respect to the first one). The average information obtainable by the proposed measurements is also calculated and it is shown that it can get different values even if the average fidelity stays constant. Possible experimental realization of the simplest proposed device is presented.Comment: 4 pages, 2 figures, reference adde

    Fast Multiqubit Gates through Simultaneous Two-Qubit Gates

    Get PDF
    Near-term quantum computers are limited by the decoherence of qubits to only being able to run low-depth quantum circuits with acceptable fidelity. This severely restricts what quantum algorithms can be compiled and implemented on such devices. One way to overcome these limitations is to expand the available gate set from single- and two-qubit gates to multiqubit gates, which entangle three or more qubits in a single step. Here, we show that such multiqubit gates can be realized by the simultaneous application of multiple two-qubit gates to a group of qubits where at least one qubit is involved in two or more of the two-qubit gates. Multiqubit gates implemented in this way are as fast as, or sometimes even faster than, the constituent two-qubit gates. Furthermore, these multiqubit gates do not require any modification of the quantum processor, but are ready to be used in current quantum-computing platforms. We demonstrate this idea for two specific cases: simultaneous controlled-Z gates and simultaneous iswap gates. We show how the resulting multiqubit gates relate to other well-known multiqubit gates and demonstrate through numerical simulations that they would work well in available quantum hardware, reaching gate fidelities well above 99%. We also present schemes for using these simultaneous two-qubit gates to swiftly create large entangled states like Dicke and Greenberger-Horne-Zeilinger states

    Nonlinear Optics Quantum Computation and Quantum Simulation with Circuit-QED

    Get PDF
    Superconducting quantum circuits are a promising approach for realizations of large scale quantum information processing and quantum simulations. The Josephson junction, which forms the basis of superconducting circuits, is the only known nonlinear non-dissipative circuit element, and its inherent nonlinearities have found many different applications. In this thesis I discuss specific implementations of these circuits. I show that strong two-photon nonlinearities can be induced by coupling photons in the microwave domain to Josephson nonlinearities. I then propose a method to simulate a parent Hamiltonian that can potentially be used to observe fractional quantum Hall states of light. I will also explore how superconducting circuits can be used to modify system-bath couplings to emulate a chemical potential for photons. Finally, I consider the limitations of devising a scheme to couple superconducting circuits to trapped ions, and consider the challenges for such hybrid approaches

    Quantum gates, sensors, and systems with trapped ions

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 203-218).Quantum information science promises a host of new and useful applications in communication, simulation, and computational algorithms. Trapped atomic ions are one of the leading physical systems with potential to implement a large-scale quantum information system, but many challenges still remain. This thesis describes some experimental approaches to address several such challenges broadly organized under three themes: gates, sensors, and systems. Quantum logic gates are the fundamental building blocks for quantum algorithms. Although they have been demonstrated with trapped ions previously, scalability requires miniaturizing ion traps by using a surface-electrode geometry. Using a single ion in a surface-electrode trap, we perform a two-qubit entangling gate and fully characterize it via quantum process tomography, as an initial validation of surface-electrode ion traps for quantum information processing. Good logic gates are often good sensors for fast fluctuations and energy changes in their environment. Trapped ions are sensitive to fluctuating and static charges, leading to motional state decoherence (heating) and instabilities, problems exacerbated by the surface-electrode geometry. We investigate the material dependence of heating, specifically with aluminum and superconducting traps, to elucidate the physical origin of these fluctuating charges. Static charging is hypothesized to be caused by the trapping and cooling lasers due to the photoelectric effect. We perform systematic experiments with aluminum, gold, and copper traps with lasers at various wavelengths to validate this hypothesis. Realizing quantum processors at the system level requires models and tools for predicting system performance, demonstration of good classical and quantum control, and techniques for integrating different quantum systems. We develop a modeling system for trapped ion quantum computing experiments and simulate the effect of physical and technical noise sources on practical realizations of quantum algorithms in a trapped ion system. We experimentally demonstrate several such algorithms, including the quantum Fourier transform, order-finding, and Shor's algorithm on up to 5 ions. These experiments highlight several unique advantages of ion trap systems and help identify needs for further development. Finally, we explore the integration of ion traps with optical elements including mirrors and photon detectors as key elements in creating future hybrid quantum systems.by Shannon Xuanyue Wang.Ph.D

    Effective nonlinear interactions in circuit QED and optomechanical setups

    Get PDF
    In this thesis, we study two different physical systems, namely superconducting circuits and optomechanical cavities. In the first part of the thesis, we study superconducting qubits and resonators and their potential to implement quantum information processing tasks. We propose a circuit quantum electrodynamics realization of a protocol to generate a Greenberger-Horne-Zeilinger (GHZ) state for transmon qubits homogeneously coupled to a microwave cavity in the dispersive limit. We derive an effective Hamiltonian with pairwise qubit exchange interactions of the XY type that can be globally controlled. Starting from a separable initial state, these interactions allow to generate a multi-qubit GHZ state within a time that does not depend on the number of qubits. We discuss how to probe the non-local nature and the genuine multipartite entanglement of the generated state. Finally, we investigate the stability of the proposed scheme to inhomogeneities in the physical parameters and the weak anharmonicity of transmon qubits. In the second part of the thesis, we study optomechanical systems in which the position of a mechanical resonator modulates the resonance frequency of an optical cavity. The resulting radiation-pressure interaction is intrinsically nonlinear and can be used to implement strong Kerr nonlinearities and an effective interaction between photons. We investigate the optical bistability of such a system. The steady-state mean-field equation of the optical mode is identical to the one for a Kerr medium, and thus we expect it to have the same characteristic behavior with a lower, a middle, and an upper branch. However, the presence of position fluctuations of the mechanical resonator leads to a new feature: the upper branch will become unstable at sufficiently strong driving in certain parameter regimes. We identify the appropriate parameter regime for the upper branch to be stable, and we confirm, by numerical investigation of the quantum steady state, that the mechanical mode indeed acts as a Kerr nonlinearity for the optical mode in the low-temperature limit. This equivalence of the optomechanical system and the Kerr medium will be important for future applications of cavity optomechanics in quantum nonlinear optics and quantum information science

    Quantum computing with molecular magnets

    Get PDF
    En esta tesis se ha pretendido realizar y testar los componentes básicos necesarios de un futuro ordenador cuántico usando para ello moléculas magnéticas sencillas. Con este fin se ha comprobado que estas moléculas cumplen con los tres ingredientes principales que necesita reunir un buen candidato: qubits bien definidos y diferenciables, coherencia cuántica y la posibilidad de acoplarse a dispositivos. También se ha estudiado, por tanto, si estas moléculas conservan sus propiedades magnéticas, tales como el espín, la anisotropía magnética, la interacción entre distintos iones, etc., cuando se integran en un sensor. El trabajo que aquí se presenta se divide fundamentalmente en tres partes. Desarrollo, mejora y testado de dispositivos superconductores de interferencia cuántica (SQUID) En esta parte de la tesis se realiza un análisis detallado de varios modelos de dispositivos pertenecientes a nueva generación de susceptómetros SQUID, especialmente diseñados para medir las propiedades magnéticas de muestras de tamaño micrométrico, hasta 30 um de diámetro (capítulo 3). En particular, presentamos un estudio del ruido de estos sensores, teniendo en cuenta las distintas contribuciones extrínsecas al SQUID y provenientes de la electrónica. También se estudia la posibilidad de incluir una etapa amplificadora de bajo ruido, que permita reducir esta contribución. Por otro lado, se ha hecho un cuidadoso análisis sobre el origen de la respuesta magnética de los susceptómetros vacíos, con el fin de llegar a un protocolo común de tratamiento de los datos de susceptibilidad ac obtenidos para distintas muestras. Por último, y con el objetivo de mejorar la sensibilidad de los sensores en la detección de muestras de tamaño nanométrico, en este trabajo se presenta la realización mediante Focused Ion Beam (FIB) de una nanoespira de unos 500 nm de diámetro, en serie con la bobina detectora del SQUID. Esta nanoespira permite mejorar la sensibilidad del dispositivo en esa zona. Para comprobarlo, se incluyen varias medidas con muestras cuyo comportamiento magnético es conocido. Caracterización de cristales de moléculas magnéticas con los que se pueden llevar a cabo puertas lógicas computacionales La segunda parte incluye un estudio de imanes moleculares que contienen uno, dos o tres espines magnéticos débilmente acoplados, con el fin de comprobar que pueden utilizarse para llevar a cabo las operaciones básicas de computación cuántica. Por un lado, se estudian dímeros constituidos por dos iones Ln(III) donde Ln es un lantánido (capítulo 4). Cada uno de los espines que forman el dímero tiene una estructura de niveles tal que los dos niveles de menor energía están fuertemente separados de los niveles superiores, formando, por tanto, sistemas de dos niveles efectivos o qubits. Por otro lado, estos espines están débilmente acoplados entre sí, lo que constituye un sistema de cuatro niveles entrelazados con los que es posible realizar puertas cuánticas de dos qubits, en particular las puertas CNOT y SWAP. En esta tesis se presentan los primeros resultados de realización de estas puertas, en los dímeros de Tb2, Dy2 y ErCe. En cuanto a los trímeros, o imanes moleculares con tres espines magnéticos, en esta tesis se presenta un estudio para el trímero compuesto por dos iones Cu(II) y un ion Er(III) (capítulo 5). En primer lugar se analiza el comportamiento magnético de los dos iones de cobre en el trímero CuLaCu, donde el ion La(III) es diamagnético, y se comprueba que existe un acoplo entre sus espines, permitiendo la realización de puertas de dos qubits, también para este material. Incluyendo la información obtenida para este compuesto, se presenta por último un análisis del comportamiento magnético del trímero CuErCu constatando la existencia de un acoplo muy débil entre los iones cobre (II) y el ion erbio y, por tanto, la posibilidad de realizar puertas cuánticas de tres qubits, como las puertas Fredkin y Toffoli. Estudio de procesos de relajación magnética y deposición de imanes moleculares sobre superficies Esta última parte pretende aunar las dos partes anteriores, depositando las moléculas estudiadas en la parte anterior sobre los dispositivos superconductores del principio mediante la técnica de Dip-Pen Nanolitography (DPN). La intención última es comprobar si estas moléculas mantienen sus propiedades magnéticas al ser sometidas a los efectos de un sustrato sólido ajeno a su estructura cristalina, y comprobar si se trata de sistemas lo suficientemente coherentes como para realizar operaciones cuánticas sin que los estados se degraden demasiado rápido. En primer lugar, en el capítulo 6 se presenta un estudio de los procesos de relajación de estas moléculas en su estado original, atendiendo al origen y las causas de estos procesos. Para ello se ofrecen los resultados en una serie de muestras en las que hay cada vez más niveles accesibles, partiendo de un monómero ErLa con un sólo espín magnético y sin apenas interacciones hiperfinas, hasta llegar al caso de un dímero con dos espines magnéticos y una considerable contribución nuclear, Dy2. Una vez entendidos los procesos de relajación en las muestras cristalinas, se han depositado unas pocas monocapas de estas muestras sobre los SQUID utilizando la técnica DPN, con el fin de comprobar su integridad física (capítulo 7). En particular se describen experimentos para dos muestras diferentes, un imán molecular cuyo comportamiento es bastante conocido, el Mn12, y un dímero de Dy2. En este capítulo se muestran los resultados de las medidas de susceptibilidad ac en comparación con las medidas previas, realizadas sobre microcristales

    Superconducting Quantum Circuits, Qubits and Computing

    Full text link
    This paper gives an introduction to the physics and principles of operation of quantized superconducting electrical circuits for quantum information processing.Comment: 59 pages 68 figures. Prepared for Handbook of Theoretical and Computational Nanotechnolog
    corecore