9 research outputs found

    Haptics-Enabled Teleoperation for Robotics-Assisted Minimally Invasive Surgery

    Get PDF
    The lack of force feedback (haptics) in robotic surgery can be considered to be a safety risk leading to accidental tissue damage and puncturing of blood vessels due to excessive forces being applied to tissue and vessels or causing inefficient control over the instruments because of insufficient applied force. This project focuses on providing a satisfactory solution for introducing haptic feedback in robotics-assisted minimally invasive surgical (RAMIS) systems. The research addresses several key issues associated with the incorporation of haptics in a master-slave (teleoperated) robotic environment for minimally invasive surgery (MIS). In this project, we designed a haptics-enabled dual-arm (two masters - two slaves) robotic MIS testbed to investigate and validate various single-arm as well as dual-arm teleoperation scenarios. The most important feature of this setup is the capability of providing haptic feedback in all 7 degrees of freedom (DOF) required for RAMIS (3 translations, 3 rotations and pinch motion of the laparoscopic tool). The setup also enables the evaluation of the effect of replacing haptic feedback by other sensory cues such as visual representation of haptic information (sensory substitution) and the hypothesis that surgical outcomes may be improved by substituting or augmenting haptic feedback by such sensory cues

    Modeling of Force and Motion Transmission in Tendon-Driven Surgical Robots

    Get PDF
    Tendon-based transmission is a common approach for transferring motion and forces in surgical robots. In spite of design simplicity and compactness that comes with the tendon drives, there exists a number of issues associated with the tendon-based transmission. In particular, the elasticity of the tendons and the frictional interaction between the tendon and the routing result in substantially nonlinear behavior. Also, in surgical applications, the distal joints of the robot and instruments cannot be sensorized in most cases due to technical limitations. Therefore, direct measurement of forces and use of feedback motion/force control for compensation of uncertainties in tendon-based motion and force transmission are not possible. However, force/motion estimation and control in tendon-based robots are important in view of the need for haptic feedback in robotic surgery and growing interest in automatizing common surgical tasks. One possible solution to the above-described problem is the development of mathematical models for tendon-based force and motion transmission that can be used for estimation and control purposes. This thesis provides analysis of force and motion transmission in tendon-pulley based surgical robots and addresses various aspects of the transmission modeling problem. Due to similarities between the quasi-static hysteretic behavior of a tendon-pulley based da Vinci® instrument and that of a typical tendon-sheath mechanism, a distributed friction approach for modeling the force transmission in the instrument is developed. The approach is extended to derive a formula for the apparent stiffness of the instrument. Consequently, a method is developed that uses the formula for apparent stiffness of the instrument to determine the stiffness distribution of the tissue palpated. The force transmission hysteresis is further investigated from a phenomenological point of view. It is shown that a classic Preisach hysteresis model can accurately describe the quasi-static input-output force transmission behavior of the da Vinci® instrument. Also, in order to describe the distributed friction effect in tendon-pulley mechanisms, the creep theory from belt mechanics is adopted for the robotic applications. As a result, a novel motion transmission model is suggested for tendon-pulley mechanisms. The developed model is of pseudo-kinematic type as it relates the output displacement to both the input displacement and the input force. The model is subsequently used for position control of the tip of the instrument. Furthermore, the proposed pseudo-kinematic model is extended to compensate for the coupled-hysteresis effect in a multi-DOF motion. A dynamic transmission model is also suggested that describes system’s response to high frequency inputs. Finally, the proposed motion transmission model was used for modeling of the backlash-like hysteresis in RAVEN II surgical robot

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Magnetic Medical Capsule Robots

    Get PDF

    Robotic Assisted Fracture Surgery

    Get PDF

    Electroencephalographic Responses to Frictional Stimuli: Measurement Setup and Processing Pipeline

    Get PDF
    Tactility is a key sense in the human interaction with the environment. The understanding of tactile perception has become an exciting area in industrial, medical and scienti c research with an emphasis on the development of new haptic technologies. Surprisingly, the quanti cation of tactile perception has, compared to other senses, only recently become a eld of scienti c investigation. The overall goal of this emerging scienti c discipline is an understanding of the causal chain from the contact of the skin with materials to the brain dynamics representing recognition of and emotional reaction to the materials. Each link in this chain depends on individual and environmental factors ranging from the in uence of humidity on contact formation to the role of attention for the perception of touch. This thesis reports on the research of neural correlates to the frictional stimulation of the human ngertip. Event-related electroencephalographic potentials (ERPs) upon the change in ngertip friction are measured and studied, when pins of a programmable Braille-display were brought into skin contact. In order to contribute to the understanding of the causal chain mentioned above, this work combines two research areas which are usually not connected to each other, namely tribology and neuroscience. The goal of the study is to evaluate contributions of friction to the process of haptic perception. Key contributions of this thesis are: 1) Development of a setup to simultaneously record physical forces and ERPs upon tactile stimulation. 2) Implementation of a dedicated signal processing pipeline for the statistical analysis of ERP -amplitudes, -latencies and -instantaneous phases. 3) Interpretation of skin friction data and extraction of neural correlates with respect to varying friction intensities. The tactile stimulation of the ngertip upon raising and lowering of di erent lines of Braille-pins (one, three and ve) caused pronounced N50 and P100 components in the event-related ERPsequences, which is in line with the current literature. Friction between the ngertip and the Braille-system exhibited a characteristic temporal development which is attributed to viscoelastic skin relaxation. Although the force stimuli varied by a factor of two between the di erent Braillepatterns, no signi cant di erences were observed between the amplitudes and latencies of ERPs after standard across-trial averaging. Thus, for the rst time a phase measure for estimating singletrial interactions of somatosensory potentials is proposed. Results show that instantaneous phase coherency is evoked by friction, and that higher friction induces stronger and more time-localized phase coherencyDie Taktilität ist ein zentraler Sinn in der Interaktion mit unserer Umwelt. Das Bestreben, fundierte Erkenntnisse hinsichtlich der taktilenWahrnehmung zu gewinnen erhält groÿen Zuspruch in der industriellen, medizinischen und wissenschaftlichen Forschung, meist mit einem Fokus auf der Entwicklung von haptischen Technologien. Erstaunlicherweise ist jedoch die wissenschaftliche Quanti zierung der taktilen Wahrnehmung, verglichen mit anderen Sinnesmodalitäten, erst seit kurzem ein sich entwickelnder Forschungsbereich. Fokus dieser Disziplin ist es, die kognitive und emotionale Reaktion nach physischem Kontakt mit Materialien zu beschreiben, und die kausale Wirkungskette von der Berührung bis zur Reaktion zu verstehen. Dabei unterliegen die einzelnen Faktoren dieser Kette sowohl individuellen als auch externen Ein üssen, welche von der Luftfeuchtigkeit während des Kontaktes bis hin zur Rolle der Aufmerksamkeit für die Wahrnehmung reichen. Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von neuronalen Korrelaten nach Reibungsstimulation des menschlichen Fingers. Dazu wurden Reibungsänderungen, welche durch den Kontakt der menschlichen Fingerspitze mit schaltbaren Stiften eines Braille-Display erzeugt wurden, untersucht und die entsprechenden neuronalen Korrelate aufgezeichnet. Um zu dem Verst ändnis der oben erwähnten Wirkungskette beizutragen, werden Ansätze aus zwei für gewöhnlich nicht zusammenhängenden Forschungsbereichen, nämlich der Tribologie und der Neurowissenschaft, kombiniert. Folgende Beiträge sind Hauptbestandteile dieser Arbeit: 1) Realisierung einer Messumgebung zur simultanen Ableitung von Kräften und ereigniskorrelierten Potentialen nach taktiler Stimulation der Fingerspitze. 2) Aufbau einer speziellen Signalverarbeitungskette zur statistischen Analyse von stimulationsabh ängigen EEG -Amplituden, -Latenzen und -instantanen Phasen. 3) Interpretation der erhobenen Reibungsdaten und Extraktion neuronaler Korrelate hinsichtlich variierender Stimulationsintensitäten. Unsere Resultate zeigen, dass die taktile Stimulation der Fingerspitze nach Anheben und Senken von Braille-Stiften zu signi kanten N50 und P100 Komponenten in den ereigniskorrelierten Potentialen führt, im Einklang mit der aktuellen Literatur. Die Reibung zwischen der Fingerspitze und dem Braille-System zeigte einen charakteristischen Signalverlauf, welcher auf viskoelastische Hautrelaxation zurückzuführen ist. Trotz der um einen Faktor zwei verschiedenen Intensit ätsunterschiede zwischen den Stimulationsmustern zeigten sich keine signi kanten Unterschiede zwischen den einfach gemittelten Amplituden der evozierten Potentialen. Erstmalig wurde ein Phasen-Maÿ zur Identi zierung von Unterschieden zwischen somatosensorischen "single-trial" Interaktionen angewandt. Diese Phasenanalyse zeigte, im Gegensatz zur Amplituden- und Latenzanalyse, deutlichere und signi kantere Unterschiede zwischen den Stimulationsparadigmen. Es wird gefolgert, dass Kohärenz zwischen den Momentanphasen durch Reibungsereignisse herbeigef ührt wird und dass durch stärkere Reibung diese Kohärenz, im zeitlichen Verlauf, stärker und lokalisierter wird
    corecore