2,043 research outputs found

    Enhancement of Heavy-Duty Engines Performance and Reliability Using Cylinder Pressure Information

    Get PDF
    Sustainability issues are becoming increasingly prominent in applications requiring the use of heavy-duty engines. Therefore, it is important to cut emissions and costs of such engines to re-duce the carbon footprint and keep the operating expenses under control. Even if for some applications a battery electric equipment is introduced, the diesel-equipped machinery is still popular, thanks to the longer operating range. In this field, the open pit mines are a good example. In fact, the Total Cost of Ownership (TCO) of the mining equipment is highly impacted by fuel consumption (engine efficiency) and reliability (service interval and en-gine life). The present work is focused on efficiency enhancements achievable through the ap-plication of a combustion control strategy based on the in-cylinder pressure information. The benefits are mainly due to two factors. First, the negative effects of injectors ageing can be com-pensated. Second, cylindrical online calibration of the control parameters enables the combus-tion system optimization. The article is divided into two parts. The first part describes the tool-chain that is designed for the real time application of the combustion control system, while the second part concerns the algorithm that would be implemented on the Engine Control Unit (ECU) to leverage the in-cylinder pressure information. The assessment of the potential benefits and feasibility of the combustion control algorithm is carried out in a Software in the Loop (SiL) environment, simulating both the developed control strategy and the engine behavior (Liebherr D98). Our goal is to validate the control algorithm through SiL simulations. The results of the validation process demonstrate the effectiveness of the control strategy: firstly, cylinder dispari-ty on IMEP (+/-2.5% in reference conditions) is virtually canceled. Secondly, MFB50 is individual-ly optimized, equalizing Pmax among the cylinders (+/-4% for the standard calibration), without exceeding the reliability threshold. In addition to this, BSFC is reduced by 1%, thanks to the ac-curate cylinder-by-cylinder calibration. Finally, ageing effects or fuel variations can be implicitly compensated, keeping optimal performance thorough engine life

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    A neuro-fuzzy based combustion sensor for the control of optimal engine combustion efficiency

    Get PDF
    Modern and advanced control systems for internal combustion engines require accurate feedback information from the combustion chamber. Whereas the in-cylinder pressure sensor provides this information through its close thermodynamic ties with the combustion process, drawbacks in its implementation push research towards other non-intrusive sensing methods. This paper suggests alternative methods of combustion phasing detection relying on measured angular crankshaft speed. Method developed, achieves sensing of angular position of the 50% of mass fraction burned (MFB50) through two steps: calculation of, so called, synthetic torque and its non-linear transformation to a combustion feature estimator through local model. In order to calibrate both parts of this virtual combustion sensor, parameters of a high-fidelity crankshaft dynamic model are identified, and the linear neuro-fuzzy based model is trained with extensive experimentally collected data set. Created virtual MFB50 sensor, demonstrated its performance, on a large test data set comprised of 70% of gathered data

    A Study Model Predictive Control for Spark Ignition Engine Management and Testing

    Get PDF
    Pressure to improve spark-ignition (SI) engine fuel economy has driven thedevelopment and integration of many control actuators, creating complex controlsystems. Integration of a high number of control actuators into traditional map basedcontrollers creates tremendous challenges since each actuator exponentially increasescalibration time and investment. Model Predictive Control (MPC) strategies have thepotential to better manage this high complexity since they provide near-optimal controlactions based on system models. This research work focuses on investigating somepractical issues of applying MPC with SI engine control and testing.Starting from one dimensional combustion phasing control using spark timing(SPKT), this dissertation discusses challenges of computing the optimal control actionswith complex engine models. A nonlinear optimization is formulated to compute thedesired spark timing in real time, while considering knock and combustion variationconstraints. Three numerical approaches are proposed to directly utilize complex high-fidelity combustion models to find the optimal SPKT. A model based combustionphasing estimator that considers the influence of cycle-by-cycle combustion variations isalso integrated into the control system, making feedback and adaption functions possible.An MPC based engine management system with a higher number of controldimensions is also investigated. The control objective is manipulating throttle, externalEGR valve and SPKT to provide demanded torque (IMEP) output with minimum fuelconsumption. A cascaded control structure is introduced to simplify the formulation and solution of the MPC problem that solves for desired control actions. Sequential quadratic programming (SQP) MPC is applied to solve the nonlinear optimization problem in real time. A real-time linearization technique is used to formulate the sub-QP problems with the complex high dimensional engine system. Techniques to simplify the formulation of SQP and improve its convergence performance are also discussed in the context of tracking MPC. Strategies to accelerate online quadratic programming (QP) are explored. It is proposed to use pattern recognition techniques to “warm-start” active set QP algorithms for general linear MPC applications. The proposed linear time varying (LTV) MPC is used in Engine-in-Loop (EIL) testing to mimic the pedal actuations of human drivers who foresee the incoming traffic conditions. For SQP applications, the MPC is initialized with optimal control actions predicted by an ANN. Both proposed MPC methods significantly reduce execution time with minimal additional memory requirement

    Development of a digital twin for real-time simulation of a combustion engine-based power plant with battery storage and grid coupling

    Get PDF
    Coordinated control of combustion engine-based power plants with battery storage is the next big thing for optimising renewable energy. Digital twins can enable such sophisticated control but currently are too simplistic for the required insight. This study explores the feasibility of a fully physics-based combustion engine model in real-time co-simulation with an electrical power plant model, including battery storage. A detailed, crank-angle resolved, one-dimensional model of a large-bore stationary engine is reduced to a fast-running model (FRM). This engine digital twin is coupled with a complete power plant control model, developed in Simulink. Real-time functions are tested on a dedicated rapid-prototyping system using a target computer. Measurement data from the corresponding power plant infrastructure provide validation for the digital twin. The model-in-the-loop simulations show real-time results from both the standalone combustion and electric submodels mostly within 5% of measured values. The model coupling for fully predictive simulation was tested on a desktop computer, showing expected functionality and validity within 4% and 8% of the respective measured generator and converter outputs. However, execution time of the FRM needs reducing when moving to final hardware-in-the-loop implementation of a complete power plant model.© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Model Predictive Control of Modern High-Degree-of-Freedom Turbocharged Spark Ignited Engines with External Cooled EGR

    Get PDF
    The efficiency of modern downsized SI engines has been significantly improved using cooled Low-Pressure Exhaust Gas Recirculation, Turbocharging and Variable Valve Timing actuation. Control of these sub-systems is challenging due to their inter-dependence and the increased number of actuators associated with engine control. Much research has been done on developing algorithms which improve the transient turbocharged engine response without affecting fuel-economy. With the addition of newer technologies like external cooled EGR the control complexity has increased exponentially. This research proposes a methodology to evaluate the ability of a Model Predictive Controller to coordinate engine and air-path actuators simultaneously. A semi-physical engine model has been developed and analyzed for non-linearity. The computational burden of implementing this control law has been addressed by utilizing a semi-physical engine system model and basic analytical differentiation. The resulting linearization process requires less than 10% of the time required for widely used numerical linearization approach. Based on this approach a Nonlinear MPC-Quadratic Program has been formulated and solved with preliminary validation applied to a 1D Engine model followed by implementation on an experimental rapid prototyping control system. The MPC based control demonstrates the ability to co-ordinate different engine and air-path actuators simultaneously for torque-tracking with minimal constraint violation. Avenues for further improvement have been identified and discussed

    In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion

    Full text link
    [ES] La actual crisis climática ha instado a la comunidad investigadora y a los fabricantes a brindar soluciones para hacer que el sector del transporte sea más sostenible. De entre las diversas tecnologías propuestas, la combustión a baja temperatura ha sido objeto de una extensa investigación. La combustión premezclada dual-fuel es uno de los conceptos que abordan el compromiso de NOx-hollín en motores de encendido por compresión manteniendo alta eficiencia térmica. Esta combustión hace uso de dos combustibles con diferentes reactividades para mejorar la controlabilidad de este modo de combustión en un amplio rango de funcionamiento. De manera similar a todos los modos de combustión premezclados, esta combustión es sensible a las condiciones de operación y suele estar sujeta a variabilidad cíclica con gradientes de presión significativos. En consecuencia, se requieren estrategias de control avanzadas para garantizar un funcionamiento seguro y preciso del motor. El control en bucle cerrado es una herramienta eficaz para abordar los desafíos que plantea la combustión premezclada dual-fuel. En este tipo de control, para mantener el funcionamiento deseado, las acciones de control se adaptan y corrigen a partir de una retroalimentación con las señales de salida del motor. Esta tesis presenta estrategias de control basadas en la medición de la señal de presión en el cilindro, aplicadas a motores de combustión premezclada dual-fuel. En ella se resuelven diversos aspectos del funcionamiento del motor mediante el diseño de controladores dedicados, haciéndose especial énfasis en analizar e implementar estas soluciones a los diferentes niveles de estratificación de mezcla considerados en estos motores (es decir, totalmente, altamente y parcialmente premezclada). Inicialmente, se diseñan estrategias de control basadas en el procesamiento de la señal de presión en el cilindro y se seleccionan acciones proporcionales-integrales para asegurar el rendimiento deseado del motor sin exceder las limitaciones mecánicas del motor. También se evalúa la técnica extremum seeking para realizar una supervisión de una combustión eficiente y la reducción de emisiones de NOx. Luego se analiza la resonancia de la presión en el cilindro y se implementa un controlador similar a aquel usado para el control de knock para garantizar el funcionamiento seguro del motor. Finalmente, se utilizan modelos matemáticos para diseñar un modelo orientado a control y un observador que tiene como objetivo combinar las señales medidas en el motor para mejorar las capacidades de predicción y diagnóstico en dicha configuración de motor. Los resultados de este trabajo destacan la importancia de considerar el control en bucle cerrado para abordar las limitaciones encontradas en los modos de combustión premezclada. En particular, el uso de la medición de presión en el cilindro muestra la relevancia y el potencial de esta señal para desarrollar estrategias de control complejas y precisas.[CA] L'actual crisi climàtica ha instat a la comunitat investigadora i als fabricants a brindar solucions per a fer que el sector del transport siga més sostenible. D'entre les diverses tecnologies proposades, la combustió a baixa temperatura ha sigut objecte d'una extensa investigació. La combustió premesclada dual-fuel és un dels conceptes que aborden el compromís de NOx-sutge en motors d'encesa per compressió mantenint alta eficiència tèrmica. Aquesta combustió fa ús de dos combustibles amb diferents reactivitats per a millorar la controlabilitat d'aquest tipus de combustió en un ampli rang de funcionament. De manera similar a tots els tipus de combustió premesclada, aquesta combustió és sensible a les condicions d'operació i sol estar subjecta a variabilitat cíclica amb gradients de pressió significatius. En conseqüència, es requereixen estratègies de control avançades per a garantir un funcionament segur i precís del motor. El control en bucle tancat és una eina eficaç per a abordar els desafiaments que planteja la combustió premesclada dual-fuel. En aquesta mena de control, per a mantindre el funcionament desitjat, les accions de control s'adapten i corregeixen a partir d'una retroalimentació amb els senyals d'eixida del motor. Aquesta tesi presenta estratègies de control basades en el mesurament del senyal de pressió en el cilindre, aplicades a motors de combustió premesclada dual-fuel. En ella es resolen diversos aspectes del funcionament del motor mitjançant el disseny de controladors dedicats, fent-se especial èmfasi a analitzar i implementar aquestes solucions als diferents nivells d'estratificació de mescla considerats en aquests motors (és a dir, totalment, altament i parcialment premesclada). Inicialment, es dissenyen estratègies de control basades en el processament del senyal de pressió en el cilindre i se seleccionen accions proporcionals-integrals per a assegurar el rendiment desitjat del motor sense excedir les limitacions mecàniques del motor. També s'avalua la tècnica extremum seeking per a realitzar una supervisió d'una combustió eficient i la reducció d'emissions de NOx. Després s'analitza la ressonància de la pressió en el cilindre i s'implementa un controlador similar a aquell usat per al control de knock per a garantir el funcionament segur del motor. Finalment, s'utilitzen models matemàtics per a dissenyar un model orientat a control i un observador que té com a objectiu combinar els senyals mesurats en el motor per a millorar les capacitats de predicció i diagnòstic en aquesta configuració de motor. Els resultats d'aquest treball destaquen la importància de considerar el control en bucle tancat per a abordar les limitacions trobades en la combustió premesclada. En particular, l'ús del mesurament de pressió en el cilindre mostra la rellevància i el potencial d'aquest senyal per a desenvolupar estratègies de control complexes i precises.[EN] The current climate crisis has urged the research community and manufacturers to provide solutions to make the transportation sector cleaner. Among the various technologies proposed, low temperature combustion has undergone extensive investigation. Premixed dual-fuel combustion is one of the concepts addressing the NOx-soot trade-off in compression ignited engines, while maintaining high thermal efficiency. This combustion makes use of two fuels with different reactivities in order to improve the controllability of this combustion mode over a wide range of operation. Similarly to all premixed combustion modes, this combustion is nevertheless sensitive to the operating conditions and traditionally exhibits cycle-to-cycle variability with significant pressure gradients. Consequently, advanced control strategies to ensure a safe and accurate operation of the engine are required. Feedback control is a powerful approach to address the challenges raised by the premixed dual-fuel combustion. By measuring the output signals from the engine, strategies can be developed to adapt and correct the control actions to maintain the desired operation. This thesis presents control strategies, based on the in-cylinder pressure signal measurement, applied to premixed dual-fuel combustion engines. Various objectives were addressed by designing dedicated controllers, where a special emphasis was made towards analyzing and implementing these solutions to the different levels of mixture stratification considered in these engines (i.e., fully, highly and partially premixed). At first, feedback control strategies based on the in-cylinder pressure signal processing were designed. Proportional-integral actions were selected to ensure the desired engine performance without exceeding the mechanical constraints of the engine. Extremum seeking was evaluated to track efficient combustion phasing and NOx emissions reduction. The in-cylinder pressure resonance was then analyzed and a knock-like controller was implemented to ensure safe operation of the engine. Finally, mathematical models were used to design a control-oriented model and a state observer that aimed to leverage the signals measured in the engine to improve the prediction and diagnostic capabilities in such engine configuration. The results from this work highlighted the importance of considering feedback control to address the limitations encountered in premixed combustion modes. Particularly, the use of the in-cylinder pressure measurement showed the relevance and potential of this signal to develop complex and accurate control strategies.This thesis was financially supported by the Programa Operativo del Fondo Social Europeo (FSE) de la Comunitat Valenciana 2014-2020 through grant ACIF/2018/141.Barbier, ARS. (2022). In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18327

    Optimal air and fuel-path control of a diesel engine

    Get PDF
    The work reported in this thesis explores innovative control structures and controller design for a heavy duty Caterpillar C6.6 diesel engine. The aim of the work is not only to demonstrate the optimisation of engine performance in terms of fuel consumption, NOx and soot emissions, but also to explore ways to reduce lengthy calibration time and its associated high costs. The test engine is equipped with high pressure exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT). Consequently, there are two principal inputs in the air-path: EGR valve position and VGT vane position. The fuel injection system is common rail, with injectors electrically actuated and includes a multi-pulse injection mode. With two-pulse injection mode, there are as many as five control variables in the fuel-path needing to be adjusted for different engine operating conditions. [Continues.

    Closed-Loop Control of HCCI Engine Dynamics

    Get PDF
    The topic of the thesis is control of Homogeneous Charge Compression Ignition (HCCI) engine dynamics. HCCI offers a potential to combine high efficiency with very low emissions. In order to fulfill the potential benefits, closed-loop control is needed. The thesis discusses sensors, feedback signals and actuators for closed-loop control of the HCCI combustion. Closed-loop control of the HCCI combustion using ion current is demonstrated. Models of the HCCI dynamics suitable for purposes of control design are presented. It is shown that low-order models are sufficient to describe the HCCI dynamics. Models of HCCI combustion have been determined both by system identification and by physical modeling. Different methods for characterizing and controlling the HCCI combustion are outlined and demonstrated. In cases where the combustion phasing in a six-cylinder heavy-duty engine was controlled, either by a Variable Valve Actuation system using the inlet valve or a dual-fuel system, results are presented. Combustion phasing is a limiting factor of the load control and emission control performance. A system where control of HCCI on a cycle-to-cycle basis is outlined and cylinder individual cycle-to-cycle control on a six-cylinder heavy duty engine is presented. Various control strategies are compared. Model-based control, such as LQG and Model Predictive Control MPC, and PID control are shown to give satisfactory controller performance. An MPC controller is proposed as a solution to the problem of load-torque control with simultaneous minimization of the fuel consumption and emissions, while satisfying the constraints on cylinder pressure

    Design and Optimization of In-Cycle Closed-Loop Combustion Control with Multiple Injections

    Get PDF
    With the increasing demand of transportation, biofuels play a fundamental role in the transition to sustainable powertrains. For the increased uncertainty of biofuel combustion properties, advanced combustion control systems have the potential to operate the engine with high flexibility while maintaining a high efficiency and robustness. For that purpose, this thesis investigates the analysis, design, implementation, and application of closed-loop Diesel combustion control algorithms. By fast in-cylinder pressure measurements, the combustion evolution can be monitored to adjust a multi-pulse fuel injection within the same cycle. This is referred to as in-cycle closed-loop combustion control.The design of the controller is based on the experimental characterization of the combustion dynamics by the heat release analysis, improved by the proposed cylinder volume deviation model. The pilot combustion, its robustness and dynamics, and its effects on the main injection were analyzed. The pilot burnt mass significantly affects the main combustion timing and heat release shape, which determines the engine efficiency and emissions. By the feedback of a pilot mass virtual sensor, these variations can be compensated by the closed-loop feedback control of the main injection. Predictive models are introduced to overcome the limitations imposed by the intrinsic delay between the control action (fuel injection) and output measurements (pressure increase). High prediction accuracy is possible by the on-line model adaptation, where a reduced multi-cylinder method is proposed to reduce their complexity. The predictive control strategy permits to reduce the stochastic cyclic variations of the controlled combustion metrics. In-cycle controllability of the combustion requires simultaneous observability of the pilot combustion and control authority of the main injection. The imposition of this restriction may decrease the indicated efficiency and increase the operational constraints violation compared to open-loop operation. This is especially significant for pilot misfire. For in-cycle detection of pilot misfire, stochastic and deterministic methods were investigated. The on-line pilot misfire diagnosis was feedback for its compensation by a second pilot injection. High flexibility on the combustion control strategy was achieved by a modular design of the controller. A finite-state machine was investigated for the synchronization of the feedback signals (measurements and model-based predictions), active controller and output action. The experimental results showed an increased tracking error performance and shorter transients, regardless of operating conditions and fuel used.To increase the indicated efficiency, direct and indirect optimization methods for the combustion control were investigated. An in-cycle controller to reach the maximum indicated efficiency increased it by +0.42%unit. The indirect method took advantage of the reduced cyclic variations to optimize the indicated efficiency under constraints on hardware and emission limits. By including the probability and in-cycle compensation of pilot misfire, the optimization of the set-point reference of CA50 increased the indicated efficiency by +0.6unit at mid loads, compared to open-loop operation.Tools to evaluate the total cost of the system were provided by the quantification of the hardware requirements for each of the controller modules
    corecore