3,695 research outputs found

    Bioans: bio-inspired ambient intelligence protocol for wireless sensor networks

    Get PDF
    This paper describes the BioANS (Bio-inspired Autonomic Networked Services) protocol that uses a novel utility-based service selection mechanism to drive autonomicity in sensor networks. Due to the increase in complexity of sensor network applications, self-configuration abilities, in terms of service discovery and automatic negotiation, have become core requirements. Further, as such systems are highly dynamic due to mobility and/or unreliability; runtime self-optimisation and self-healing is required. However the mechanism to implement this must be lightweight due to the sensor nodes being low in resources, and scalable as some applications can require thousands of nodes. BioANS incorporates some characteristics of natural emergent systems and these contribute to its overall stability whilst it remains simple and efficient. We show that not only does the BioANS protocol implement autonomicity in allowing a dynamic network of sensors to continue to function under demanding circumstances, but that the overheads incurred are reasonable. Moreover, state-flapping between requester and provider, message loss and randomness are not only tolerated but utilised to advantage in the new protocol

    Computing Vertex Centrality Measures in Massive Real Networks with a Neural Learning Model

    Full text link
    Vertex centrality measures are a multi-purpose analysis tool, commonly used in many application environments to retrieve information and unveil knowledge from the graphs and network structural properties. However, the algorithms of such metrics are expensive in terms of computational resources when running real-time applications or massive real world networks. Thus, approximation techniques have been developed and used to compute the measures in such scenarios. In this paper, we demonstrate and analyze the use of neural network learning algorithms to tackle such task and compare their performance in terms of solution quality and computation time with other techniques from the literature. Our work offers several contributions. We highlight both the pros and cons of approximating centralities though neural learning. By empirical means and statistics, we then show that the regression model generated with a feedforward neural networks trained by the Levenberg-Marquardt algorithm is not only the best option considering computational resources, but also achieves the best solution quality for relevant applications and large-scale networks. Keywords: Vertex Centrality Measures, Neural Networks, Complex Network Models, Machine Learning, Regression ModelComment: 8 pages, 5 tables, 2 figures, version accepted at IJCNN 2018. arXiv admin note: text overlap with arXiv:1810.1176
    • …
    corecore