5,044 research outputs found

    Experimental Study on Key Generation for Physical Layer Security in Wireless Communications

    Get PDF
    This paper presents a thorough experimental study on key generation principles, i.e., temporal variation, channel reciprocity, and spatial decorrelation, through a testbed constructed by using wireless open-access research platform. It is the first comprehensive study through: 1) carrying out a number of experiments in different multipath environments, including an anechoic chamber, a reverberation chamber, and an indoor office environment, which represents little, rich, and moderate multipath, respectively; 2) considering static, object moving, and mobile scenarios in these environments, which represents different levels of channel dynamicity; and 3) studying two most popular channel parameters, i.e., channel state information and received signal strength. Through results collected from over a hundred tests, this paper offers insights to the design of a secure and efficient key generation system. We show that multipath is essential and beneficial to key generation as it increases the channel randomness. We also find that the movement of users/objects can help introduce temporal variation/randomness and help users reach an agreement on the keys. This paper complements existing research by experiments constructed by a new hardware platform

    Reciprocity Calibration for Massive MIMO: Proposal, Modeling and Validation

    Get PDF
    This paper presents a mutual coupling based calibration method for time-division-duplex massive MIMO systems, which enables downlink precoding based on uplink channel estimates. The entire calibration procedure is carried out solely at the base station (BS) side by sounding all BS antenna pairs. An Expectation-Maximization (EM) algorithm is derived, which processes the measured channels in order to estimate calibration coefficients. The EM algorithm outperforms current state-of-the-art narrow-band calibration schemes in a mean squared error (MSE) and sum-rate capacity sense. Like its predecessors, the EM algorithm is general in the sense that it is not only suitable to calibrate a co-located massive MIMO BS, but also very suitable for calibrating multiple BSs in distributed MIMO systems. The proposed method is validated with experimental evidence obtained from a massive MIMO testbed. In addition, we address the estimated narrow-band calibration coefficients as a stochastic process across frequency, and study the subspace of this process based on measurement data. With the insights of this study, we propose an estimator which exploits the structure of the process in order to reduce the calibration error across frequency. A model for the calibration error is also proposed based on the asymptotic properties of the estimator, and is validated with measurement results.Comment: Submitted to IEEE Transactions on Wireless Communications, 21/Feb/201

    Performance Improvement of Secret Key Generation Scheme in Wireless Indoor Environment

    Get PDF
    The Secret Key Generation (SKG) scheme that exploits the reciprocity and uniqueness of wireless channel between two users plays a significant part in a new increasing distributed security system. The scheme performance can be distinguished based on the low value of Key disagreement Rate (KDR), the high value of Key Generation Rate (KGR), as well as the fulfillment of the NIST randomness standard. The previous SKG scheme has a high KDR due to a direct quantization of a measurement result of the Received Signal Strength (RSS). To overcome the above issue, we conduct a pre-processing of measurement result before quantization with the Kalman method. The pre-process is carried out to improve the channel reciprocity between two legitimate users with the objective to reduce the bit mismatch. Through an experiment, we propose a new quantization scheme called a Modified Multi-Bit (MMB) that uses a multi-bit system on every level of quantization. The test results show that the proposed combination of preprocessing and the MMB scheme has a better performance compared to the existing schemes in terms of KDR and KGR. The Secret Key generated by our scheme also fulfills the NIST randomness standard
    • …
    corecore