521 research outputs found

    Experimental study of geometric t-spanners : a running time comparison

    Get PDF
    The construction of t-spanners of a given point set has received a lot of attention, especially from a theoretical perspective. We experimentally study the performance of the most common construction algorithms for points in the Euclidean plane. In a previous paper [10] we considered the properties of the produced graphs from five common algorithms. We consider several additional algorithms and focus on the running times. This is the first time an extensive comparison has been made between the running times of construction algorithms of t-spanners

    Sparse geometric graphs with small dilation

    Get PDF
    Given a set S of n points in R^D, and an integer k such that 0 <= k < n, we show that a geometric graph with vertex set S, at most n - 1 + k edges, maximum degree five, and dilation O(n / (k+1)) can be computed in time O(n log n). For any k, we also construct planar n-point sets for which any geometric graph with n-1+k edges has dilation Omega(n/(k+1)); a slightly weaker statement holds if the points of S are required to be in convex position

    Computing the Greedy Spanner in Linear Space

    Full text link
    The greedy spanner is a high-quality spanner: its total weight, edge count and maximal degree are asymptotically optimal and in practice significantly better than for any other spanner with reasonable construction time. Unfortunately, all known algorithms that compute the greedy spanner of n points use Omega(n^2) space, which is impractical on large instances. To the best of our knowledge, the largest instance for which the greedy spanner was computed so far has about 13,000 vertices. We present a O(n)-space algorithm that computes the same spanner for points in R^d running in O(n^2 log^2 n) time for any fixed stretch factor and dimension. We discuss and evaluate a number of optimizations to its running time, which allowed us to compute the greedy spanner on a graph with a million vertices. To our knowledge, this is also the first algorithm for the greedy spanner with a near-quadratic running time guarantee that has actually been implemented

    Exact Computation of a Manifold Metric, via Lipschitz Embeddings and Shortest Paths on a Graph

    Full text link
    Data-sensitive metrics adapt distances locally based the density of data points with the goal of aligning distances and some notion of similarity. In this paper, we give the first exact algorithm for computing a data-sensitive metric called the nearest neighbor metric. In fact, we prove the surprising result that a previously published 33-approximation is an exact algorithm. The nearest neighbor metric can be viewed as a special case of a density-based distance used in machine learning, or it can be seen as an example of a manifold metric. Previous computational research on such metrics despaired of computing exact distances on account of the apparent difficulty of minimizing over all continuous paths between a pair of points. We leverage the exact computation of the nearest neighbor metric to compute sparse spanners and persistent homology. We also explore the behavior of the metric built from point sets drawn from an underlying distribution and consider the more general case of inputs that are finite collections of path-connected compact sets. The main results connect several classical theories such as the conformal change of Riemannian metrics, the theory of positive definite functions of Schoenberg, and screw function theory of Schoenberg and Von Neumann. We develop novel proof techniques based on the combination of screw functions and Lipschitz extensions that may be of independent interest.Comment: 15 page

    Computing a Minimum-Dilation Spanning Tree is NP-hard

    Get PDF
    In a geometric network G = (S, E), the graph distance between two vertices u, v in S is the length of the shortest path in G connecting u to v. The dilation of G is the maximum factor by which the graph distance of a pair of vertices differs from their Euclidean distance. We show that given a set S of n points with integer coordinates in the plane and a rational dilation delta > 1, it is NP-hard to determine whether a spanning tree of S with dilation at most delta exists

    Bounded-degree Plane Geometric Spanners: Connecting the Dots Between Theory and Practice

    Get PDF
    The construction of bounded-degree plane geometric spanners has been a focus of interest since 2002 when Bose, Gudmundsson, and Smid proposed the first algorithm to construct such spanners. To date, eleven algorithms have been designed with various trade-offs in degree and stretch factor. We have implemented these sophisticated algorithms in C++ using the CGAL library and experimented with them using large synthetic and real-world pointsets. Our experiments have revealed their practical behavior and real-world efficacy. We share the implementations via GitHub for broader uses and future research. We present a simple practical algorithm, named AppxStretchFactor, that can estimate stretch factors (obtains lower bounds on the exact stretch factors) of geometric spanners – a challenging problem for which no practical algorithm is known yet. In our experiments with bounded-degree plane geometric spanners, we find that AppxStretchFactor estimates stretch factors almost precisely. Further, it gives linear runtime performance in practice for the pointset distributions considered in this work, making it much faster than the naive Dijkstra-based algorithm for calculating stretch factors

    Multi-Level Weighted Additive Spanners

    Get PDF
    Given a graph G = (V, E), a subgraph H is an additive +β spanner if distH(u, v) ≤ distG(u, v) + β for all u, v ∈ V. A pairwise spanner is a spanner for which the above inequality is only required to hold for specific pairs P ⊆ V × V given on input; when the pairs have the structure P = S × S for some S ⊆ V, it is called a subsetwise spanner. Additive spanners in unweighted graphs have been studied extensively in the literature, but have only recently been generalized to weighted graphs. In this paper, we consider a multi-level version of the subsetwise additive spanner in weighted graphs motivated by multi-level network design and visualization, where the vertices in S possess varying level, priority, or quality of service (QoS) requirements. The goal is to compute a nested sequence of spanners with the minimum total number of edges. We first generalize the +2 subsetwise spanner of [Pettie 2008, Cygan et al., 2013] to the weighted setting. We experimentally measure the performance of this and several existing algorithms by [Ahmed et al., 2020] for weighted additive spanners, both in terms of runtime and sparsity of the output spanner, when applied as a subroutine to multi-level problem. We provide an experimental evaluation on graphs using several different random graph generators and show that these spanner algorithms typically achieve much better guarantees in terms of sparsity and additive error compared with the theoretical maximum. By analyzing our experimental results, we additionally developed a new technique of changing a certain initialization parameter which provides better spanners in practice at the expense of a small increase in running time. © Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Stephen Kobourov, and Richard Spence; licensed under Creative Commons License CC-BY 4.0 19th International Symposium on Experimental Algorithms (SEA 2021).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore