1,343 research outputs found

    To study propulsion drives

    Get PDF
    This paper describes a test bench developed to study and monitor the propulsion drives of electric vehicles at Tallinn University of Technology. The composition and performance of the setup are explained. The charging process of the supercapacitor bank is described as an example of the test bench application. The developed simulation model of the supercapacitor bank is presented and discussed

    A Reverse-Engineering Method for Powertrain Parameters Characterization Applied to a P2 Plug-In Hybrid Electric Vehicle with Automatic Transmission

    Get PDF
    Over the next decade, CO2 legislation will be more demanding and the automotive industry has seen in vehicle electrification a possible solution. This has led to an increasing need for advanced powertrain systems and systematic model-based control approaches, along with additional complexity. This represents a serious challenge for all the OEMs. This paper describes a novel reverse engineering methodology developed to estimate relevant powertrain data required for fuel consumption-oriented hybrid electric vehicle (HEV) modelling. The estimated quantities include high-voltage battery internal resistance, electric motor and transmission efficiency, gearshift thresholds, torque converter performance diagrams, engine fuel consumption map and front/rear hydraulic brake torque distribution. This activity provides a list of dedicated experimental tests, to be carried out on road or on a chassis dynamometer, aiming at powertrain characterization thanks to a suitable post-processing algorithm. In this regard, the methodology was applied on a P2 Diesel Plug-in HEV equipped with a 9-speed AT. Voltage and current sensors are used to measure the electrical power exchanged between battery and electric motor; a torque sensor on the propeller shaft measures the total torque coming out from the automatic transmission. The hydraulic pressures in the four brake calipers are measured and CAN data is logged. The results of the testing campaign are then presented and discussed. Functional models of powertrain subsystems are introduced and their parameters estimated using least square method. The good match between models and experimental data proved that the proposed methodology, if properly adapted to the specific layout, is a suitable tool for powertrain parameter estimation

    Modelling and Co-simulation of hybrid vehicles: A thermal management perspective

    Get PDF
    Thermal management plays a vital role in the modern vehicle design and delivery. It enables the thermal analysis and optimisation of energy distribution to improve performance, increase efficiency and reduce emissions. Due to the complexity of the overall vehicle system, it is necessary to use a combination of simulation tools. Therefore, the co-simulation is at the centre of the design and analysis of electric, hybrid vehicles. For a holistic vehicle simulation to be realized, the simulation environment must support many physical domains. In this paper, a wide variety of system designs for modelling vehicle thermal performance are reviewed, providing an overview of necessary considerations for developing a cost-effective tool to evaluate fuel consumption and emissions across dynamic drive-cycles and under a range of weather conditions. The virtual models reviewed in this paper provide tools for component-level, system-level and control design, analysis, and optimisation. This paper concerns the latest techniques for an overall vehicle model development and software integration of multi-domain subsystems from a thermal management view and discusses the challenges presented for future studies

    Reactivity controlled compression ignition engine: Pathways towards commercial viability

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/).Reactivity-controlled compression ignition (RCCI) is a promising energy conversion strategy to increase fuel efficiency and reduce nitrogen oxide (NOx) and soot emissions through improved in-cylinder combustion process. Considering the significant amount of conducted research and development on RCCI concept, the majority of the work has been performed under steady-state conditions. However, most thermal propulsion systems in transportation applications require operation under transient conditions. In the RCCI concept, it is crucial to investigate transient behavior over entire load conditions in order to minimize the engine-out emissions and meet new real driving emissions (RDE) legislation. This would help further close the gap between steady-state and transient operation in order to implement the RCCI concept into mass production. This work provides a comprehensive review of the performance and emissions analyses of the RCCI engines with the consideration of transient effects and vehicular applications. For this purpose, various simulation and experimental studies have been reviewed implementing different control strategies like control-oriented models particularly in dual-mode operating conditions. In addition, the application of the RCCI strategy in hybrid electric vehicle platforms using renewable fuels is also discussed. The discussion of the present review paper provides important insights for future research on the RCCI concept as a commercially viable energy conversion strategy for automotive applications.Peer reviewe

    Plug-in hybrid electric vehicle emissions impacts on control strategy and fuel economy

    Get PDF
    Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, at the expense of increased tailpipe emissions due to multiple cold start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.The dissertation research focuses on the design of a vehicle supervisory control system for a pre-transmission parallel PHEV powertrain architecture. Energy management strategies are evaluated and implemented in a virtual environment for preliminary assessment of petroleum displacement benefits and rudimentary drivability issues. This baseline vehicle supervisory control strategy, developed as a result of this assessment, is implemented and tested on actual hardware in a controlled laboratory environment over a baseline test cycle. Engine cold start events are aggressively addressed in the development of this control system, which lead to enhanced pre-warming and energy-based engine warming algorithms that provide substantial reductions in tailpipe emissions over the baseline supervisory control strategy.The flexibility of the PHEV powertrain allows for decreased emissions during any engine starting event through powertrain torque shaping algorithms that eliminate high engine torque transients during these periods. The results of the dissertation research show that PHEVs do have the potential for substantial reductions in fuel consumption, while remaining environmentally friendly. Tailpipe emissions from a representative PHEV test platform have been reduced to acceptable levels through the development and refinement of vehicle supervisory control methods only. Impacts on fuel consumption are minimal for the emissions reduction techniques that are implemented, while in some cases, substantial fuel consumption reductions are observed
    corecore