141 research outputs found

    Modelling and analysis of electric arc loads using harmonic domain techniques

    Get PDF
    Abstract It has been reported that as much as 12% of global electricity production goes into producing artificial light using arc discharge lamps and that global annual production of these lamps may be as much as 1.2 billion units. In the liquid steel production industry, one metric tone of steel demands, on average, 400 kW-hr and in the year 2007, the crude steel output reached 1,343.5 million metric tons. In both instances, engineered electric arcs are present and represent major loads in electrical power systems which require the utmost attention. They observe a highly non-linear behaviour with the capacity to export harmonic distortion and flicker into the power system. Electric arc furnace installations, in particular, are well-known to be sources of dynamic disturbances affecting neighbouring loads. Arc discharge lamps, on aggregate, may exhibit the same perturbing effect. Over the years, the non-linear nature of these loads and their ubiquitous nature have caught the interest of researchers in all corners of the world and from different backgrounds, including this author. The research work reported in this thesis advances current knowledge in the modelling and simulation of electric arcs with particular reference to arc discharge lamps with electromagnetic ballasts and electric arc furnaces with particular reference to operational unbalances and the impact in the installation of ancillary power electronics equipment. In these two quite distinct applications, linked by the presence of engineered electric arcs, the fundamental modelling item is a non-linear differential equation which encapsulates the physic of the electric arc by applying power balance principles. The non-linear differential equation uses the arc conductance as state variable and adapts well to model a wide range of characteristics for which a set of experimental coefficients are available. A fact of perhaps equal relevance is that the non-linear differential equation is amenable to algebraic representations using operational matrices and suitable for carrying out periodic steady-state solutions of electric circuits and systems. The modelling and numerical solution takes place in the harmonic space where all harmonics and cross-couplings between harmonics are explicitly represented. Good application examples are the harmonic domain solution of arc discharge lamps with electromagnetic ballasts and the harmonic domain solution of electric arc furnaces with ancillary power electronics equipment. Building on the experience gained with the representation of the arc discharge lamps with electromagnetic ballasts, the research turns to the representation of the electric arc furnace installation with provisions for reactive power compensation using power electronic control and harmonic filters. This is a three-phase application which comprises several nodes, giving rise a large-scale model of a non-linear system which is solved in the direct frequency domain using a blend of the Newton-Raphson method and the Gauss-Seidel method, achieving robust iterative solution to a very tight tolerance. Both algorithms are implemented in MATLAB code and the raw simulation results which are the harmonic complex conjugated vectors of nodal voltages are used to assess in a rather comprehensive manner the harmonic interactions involved in both kinds of applications

    Harmonics Effect in Industrial and University Environments

    Get PDF

    Modelling load balance type static var compensator control system response

    Get PDF
    As power system interconnection becomes more prevalent, there has been an increase in use of thyristor controlled shunt connected compensation devices for dynamic power system compensation and power transmission capacity increase. A Static Var Compensator (SVC) functions as a variable reactance capable of operating in both the inductive and capacitive region as required on a cycle by cycle basis to provide compensation at the point of connection to the power system. Voltage regulation is the operational objective of most SVCs. Therefore, transient response of SVC control systems impacts overall power system performance and inappropriate settings may lead to voltage instability. SVCs are also commonly used to convert single phase load into balanced three phase load, thereby reducing negative phase sequence voltages and currents within the power transmission system. As most load balancing SVCs are consistently operated to their capacity, removal from service to apply and test control system setting changes impacts system regulation and stability. Therefore, model development of a load balancing type SVC control system to predict response to setting changes may provide an alternative to lengthy outages of SVC plant. This paper examines the theoretical basis of thyristor controlled shunt compensation, establishing conditions for voltage support and unbalanced load compensation. Load balancing type SVC control system model development and validation is documented

    A series facts controller as a voltage fluctuation mitigation equipment: an experimental investigation

    Get PDF
    This research project addresses the mitigation of voltage fluctuations using a series-connected power electronics-based controller, which belongs to the family of Flexible AC Transmission Systems (FACTS) controllers. These are emerging technologies which have been under continuous development for over a decade, and are now available to the electricity supply industry world-wide, helping to ameliorate a wide range of power system phenomena, to increase power transfers and stability margins. Voltage fluctuation is a complex phenomenon affecting adversely transmission and distribution networks. Bulky fluctuating load, wind farms and large induction motor are the major sources of voltage fluctuations. As the phenomenon propagates, it interacts with other voltage fluctuations contributed by different sources, and affecting neighbouring lighting circuits, giving raise to a phenomenon termed light flicker. To ameliorate such a problem, a well-coordinated operation of advanced voltage mitigation equipment, control strategy and specialised measurements instruments are required. Considerable progress has been made in voltage fluctuations mitigation using shunt FACTS controllers. However, very little work has been reported in tackling the very complex issue of mitigation of voltage fluctuation propagating in the network using series FACTS controllers. To advance this area of research, this project addresses the design and construction of a three-phase scaled-down TCSC prototype and a voltage fluctuations experimental environment, suitable for real-time hardware-in-the-loop testing. The research work carries out a fundamental study of TCSC resonances, which are termed resonance modes. It is found that a non-explicit resonance mode at a=90° exists, and it is termed intrinsic resonance mode. For a well-designed TCSC, only the fundamental and the intrinsic resonance mode should be active. To facilitate the design, a procedure has been identified, based in the synchronisation of resonance modes. To achieve mitigation successfully, a new tailor-made TCSC control strategy, named RT-DIMR, and a flexible virtual flickermeter based on the IEC-61000-4-15 standard are thoroughly developed and integrated under the same real-time computing platform. The RT-DIMR demonstrates its capability for controlling the TCSC under different voltage fluctuation conditions. The lEC-Flickermeter provides online flicker severity indices, information which may be used to asses whether or not the electrical network has been effectively improved. The aim of this research work is to experimentally evaluate the TCSC capabilities to mitigate travelling voltage fluctuations. A scaled-down network and voltage fluctuation sources are constructed to mimic a voltage fluctuations propagation environment. A comprehensive number of experiments are carried out to test the mitigation scheme under a wide range of conditions. The robustness and effectiveness of the mitigation schemes have been thoroughly demonstrated. The newly developed TCSC prototype, scaled-down testing environment and RT-DIMR control strategy recommend themselves not only as an imaginative voltage fluctuations mitigation research tool, but also as a general advanced FACTS research tool

    Power quality improvement using passive shunt filter, TCR and TSC combination

    Get PDF
    Power system harmonics are a menace to electric power systems with disastrous consequences. The line current harmonics cause increase in losses, instability, and also voltage distortion. With the proliferation of the power electronics converters and increased use of magnetic, power lines have become highly polluted. Both passive and active filters have been used near harmonic producing loads or at the point of common coupling to block current harmonics. Shunt filters still dominate the harmonic compensation at medium/high voltage level, whereas active filters have been proclaimed for low/medium voltage ratings. With diverse applications involving reactive power together with harmonic compensation, passive filters are found suitable [41]. Passive filtering has been preferred for harmonic compensation in distribution systems due to low cost, simplicity, reliability, and control less operation [42]. The uncontrolled ac-dc converter suffers from operating problems of poor power factor, injection of harmonics into the ac mains, variations in dc link voltage of input ac supply, equipment overheating due to harmonic current absorption, voltage distortion due to the voltage drop caused by harmonic currents flowing through system impedances, interference on telephone and communication line etc. The circuit topologies such as passive filters, ac-dc converter, based improved power quality ac-dc converters are designed, modeled and implemented. The main emphasis of this investigation has been on a compactness of configurations, simplicity in control, reduction in rating of components, thus finally leading to saving in overall cost. Based on thesis considerations, a wide range of configurations of power quality mitigators are developed, which is expected to provide detailed exposure to design engineers to choose a particular configuration for a specific application under the given constraints of economy and desired performance. For bidirectional power flow applications, the current source converter is designed and simulated with R-L load. The necessary modeling and simulations are carried out in MATLAB environment using SIMULINK and power system block set toolboxes. The behavior of different configurations of passive tuned filters on power quality is studied. One of the way out to resolve the issue of reactive power would be using filters and TCR, TSC with combination in the power system. Installing a filter for nonlinear loads connected in power system would help in reducing the harmonic effect. The filters are widely used for reduction of harmonics. With the increase of nonlinear loads in the power system, more and more filters are required. The combinations of passive filters with TCR and TSC are also designed and analyzed to improve the power quality at ac mains. This scheme has resulted in improved power quality with overall reduced rating of passive components used in front end ac-dc converters with R-L load

    Optimised design of isolated industrial power systems and system harmonics

    Get PDF
    This work has focused on understanding the nature and impact of non-linear loads on isolated industrial power systems. The work was carried out over a period of 8 years on various industrial power systems: off-shore oil and gas facilities including an FPSO, a wellhead platform, gas production platforms, a mineral processing plant and an LNG plant. The observations regarding non-linear loads and electrical engineering work carried out on these facilities were incorporated into the report.A significant literature describing non-linear loads and system harmonics on industrial power systems was collected and reviewed. The literature was classified into five categories: industrial plants and system harmonics, non-linear loads as the source of current harmonics, practical issues with system harmonics, harmonic mitigation strategies and harmonic measurements.Off-shore oil and gas production facilities consist of a small compact power system. The power system incorporates either its own power generation or is supplied via subsea cable from a remote node. Voltage selection analysis and voltage drop calculation using commercially available power system analysis software are appropriate tools to analyse these systems. Non-linear loads comprise DC rectifiers, variable speed drives, UPS systems and thyristor controlled process heaters. All nonlinear loads produce characteristic and non-characteristic harmonics, while thyristor controlled process heaters generate inter-harmonics. Due to remote location, harmonic survey is not a common design practice. Harmonic current measurements during factory acceptance tests do not provide reliable information for accurate power system analysis.A typical mineral processing plant, located in a remote area includes its own power station. The power generation capacity of those systems is an order of magnitude higher than the power generation of a typical off-shore production facility. Those systems comprise large non-linear loads generating current and voltage interharmonics. Harmonic measurements and harmonic survey will provide a full picture of system harmonics on mineral processing plants which is the only practical way to determine system harmonics. Harmonic measurements on gearless mill drive at the factory are not possible as the GMD is assembled for the first time on site.LNG plants comprise large non-linear loads driving gas compressor, however those loads produce integer harmonics. Design by analysis process is an alternative to the current design process based on load lists. Harmonic measurements and harmonic survey provide a reliable method for determining power system harmonics in an industrial power system

    Virus inactivation through cold plasma application: a review

    Get PDF
    One of the main objects of research in the field of the application of ionized gases (plasmas) for therapeutic purposes (plasma medicine) is that of disinfection, mainly obtained by chemical reactive oxygen and nitrogen species, formed by the action of a low temperature plasma. The majority of studies on this subject cover the action of plasma on bacteria and, in a lesser measure, fungi. In the wake of the Covid-19 epidemic, it is of great interest to study the possibilities offered by this technology for what concerns virus inactivation. The purpose of this thesis is to draw up a review of the existent literature on the effect of low temperature plasmas on viruses, dividing the consulted articles on the basis of the technology used to generate the plasma and the resulting physical parameters
    corecore