2,318 research outputs found

    Surface defect machining : a new approach for hard turning

    Get PDF
    Hard turning is emerging as a key technology to substitute conventional grinding processes, mainly on account of lower equipment cost, short setup time, and a reduced number of process steps. This is, however, being impeded by a number of challenges required to be resolved, including attainable surface roughness, surface deteriorations, surface residual stresses and metallurgical transformations on the machined steel surface (white layer). In this thesis, a novel approach named Surface Defect Machining (SDM) is proposed as a viable solution to resolve a large number of these issues and to improve surface finish and surface integrity. SDM is defined as a process of machining, where a workpiece is first subjected to surface defects creation at a depth less than the uncut chip thickness; either through mechanical and/or thermal means; then followed by a normal machining operation so as to reduce the cutting resistance. A comprehensive understanding of SDM is established theoretically using finite element method (FEM). Also, an experimental study has been carried out for extensive understanding of the new technique. A good agreement between theoretical and experimental investigations has been achieved. The results show very interesting salient features of SDM, providing favourable machining outcomes. These include: reduced shear plane angle, reduced machining forces, lower residual stresses on the machined surface, reduced tool-chip interface contact length and increased chip flow velocity, as well as reductions in overall temperature in the cutting zone and changing the mechanism of chip morphology from jagged to discontinuous. However, the most prominent outcome is the improved attainable surface roughness. Furthermore, SDM shows the ability to exceed the critical feed rate and achieve an optical surface finish upto 30 nm. A scientific explanation of the improved surface roughness suggests that during SDM, a combination of both the cutting action and the rough polishing action help to improve the machined surface. Based on these findings, it is anticipated that a component machined using the SDM method should exhibit improved quality of the machined surface, which is expected to provide tremendous commercial advantages in the time to come

    Finite element analysis and experiments of saw chip formation for bearing steel GCr15 in hard cutting process

    Get PDF
    The major characteristic is easy to produce saw chip in hard cutting process; the deformation process of chip has a huge impact on machining. Aimed at the generation of saw chip for the hardened bearing steel GCr15 in hard cutting process, the finite element model of 2D orthogonal cutting was built based on DEFORM, which made the simulation analysis on the distribution change the rule of stress field, strain field, temperature field and dynamic cutting force. Based on the method of hard cutting experiment combined with the 2D cutting finite element simulation and the chip cross-sectional microscopic analysis, this paper researched the deformation mechanism of saw chip forming process. When shear instability happened, the cutting tool squeezed the cut layer, and made the deformation and temperature higher on the tip of the cutting tool, which was easy to form the heat softening area. It appeared overload by reducing the loaded area of the chip root sliding area due to the heat softening area exist, the primary cause of saw chip formation is periodic adiabatic shear fracture for the hardened bearing steel GCr15. The deformation process of saw chip can be divided into the follow three stages: the cutting material changed trapezoid, adiabatic sheared slip, continued to slip formed chip unit

    Experimental study of the brittle–ductile transition in hot cutting of SG iron specimens

    Get PDF
    http://www.sciencedirect.com/science/article/pii/S0924013612002579The present paper investigates the brittle-ductile transition (BDT) of the primary shear zone during cutting of spheroidal graphite (SG) iron in the austenitization temperature range (around 1000 °C). The experimental tests were performed using a cutting test bench in the cutting speed range of 0.8 to 1.6m.s-1. The cut surfaces were studied using optical microscopy and Scanning Electron Microscope (SEM) analysis techniques. The obtained results revealed either consequent deep fractured regions governed by a brittle-cracking regime (BCR) or a crack-free cut surface governed by a ductile-shear regime (DSR) with large plastic deformations. When cutting data were discussed with respect to the influences of cutting parameters and obtained cut surface, the correlation is significantly rich. Both cut surface integrity, cutting force curves and metallographic results show a BDT indicating a change in the dominating hot cutting process mechanism. Such a transition is associated with the dynamic recrystallization promoting strain softening and hot cutting by ductile shearing

    Hard turning of martensitic AISI 440B stainless steel

    Get PDF
    Hard turning has been in use for some time to achieve close dimensional tolerances to eliminate time consuming and costly grinding operations. The most widely used cutting tools for finish machining of hardened steels under dry cutting conditions are the ceramics and PcBN cutting tools. The purpose of this study was to investigate the machinability of hardened martensitic AISI 440 B stainless steel (HRC 42-44) using commercially available cutting tools: alumina based ceramic and PcBN, by hard turning under different machining conditions, by providing an in-depth understanding of wear mechanisms of these cutting tools. The study also developed a serrated chip formation mechanism of the workpiece and provided a deep understanding of the chemical interaction between workpiece and cBN cutting tools, through microstructural analysis of the adhered layer on the worn cutting tool. Experimental studies on the effects of cutting parameters on the tool wear mechanism, cutting forces; surface roughness, dimensional accuracy, and chip formation mechanism were investigated. The characterization of the workpiece, cutting tools, chips and wear scars on the cutting tools was performed using an X-ray diffractometer, and optical, scanning and transmission electron microscopes, as well as an energy dispersive spectroscope (EDS). The cutting speeds selected for testing the cutting tools were in the range of 100 m/min and 600 m/min, depending on the type of parameter investigated. Two depths of cut, 0.1and 0.2 mm, and three feed rates, 0.05, 0.1 and 0.15 rev/min, were selected for the experiments. Experimental results showed that the flank wear in the PcBN cutting tool is lower than that of the mixed alumina, with PcBN showing better wear resistance at all cutting conditions (about five times longer in some instances). Apart from the cutting speed, the feed rate was found as a parameter that directly influences the flank wear rate of the cutting tool. The wear mechanism for the ceramic cutting tool is predominantly abrasive wear, and for PcBN tools it was adhesive wear and abrasive wear. The abrasive wear was caused by hard carbide particles in the workpiece material resulting in grooves formed on the flank face. There was formation of a transferred layer followed by plastic deformation of the workpiece material on the rake face of the PcBN tool when cutting at low cutting speed and feed rate. At much higher cutting speeds, some form of chemical wear preceded by adhesion and abrasion was the main tool wear resulting from the chemical affinity between the PcBN tool and the workpiece. Better surface finish (Ra) was recorded for mixed ceramics but with deteriorating surface topography. The increase in the cutting speed results for improvement in the surface finish produced by both cutting tools was investigated. The final part, using the PcBN cutting tool, produced better dimensional accuracy resulting from its better wear resistance at the flank face. The results also show that good dimensional accuracy can be achieved with cBN tools using a CNC machine with high static and dimensional stiffness coupled with high precision hard turning. The influence of cutting conditions on the chip formation showed production of continuous chip at a cutting speed of 100 m/min and segmented chip at higher cutting speeds above 200 m/min by both cutting tools. The increasing cutting speed affects the formation of shear localised chips with rapid increase in shear strain rate and degree of segmentation at cutting speeds higher than 200 m/min. The microstructure of the chip produced shows the distinct carbide grain in the martensite of the work material with intense shear localisation in the primary deformation zone of the cutting tool and formation of white layer in the secondary deformation zone. The microstructure of the crater of the worn PcBN cutting tool at cutting speeds of 100 m/min and 600 m/min were studied in detail. A situ lift-out technique, in a Focused Ion Beam/SEM instrument, was used to produce thin foil specimens, which were taken out of the crater face of the PcBN tool and observed using SEM and TEM. The SEM and TEM study showed evidence of chemical interaction between the work material and the PcBN tool. Fe from the work material was found in the vicinity of TiC and AlB grains of the PcBN tool, with TiC having greater affinity for Fe. Oxidation of the elements was common in all Fe-rich areas. The microstructure of the worn PcBN cutting tool at the cutting speed of 600 m/min showed deeper penetration of Cr and Fe into the cBN tool, which was not easily detected by SEM at the cutting speed of 100 m/min. The hard turning operations using the PcBN cutting tool for substituting traditional machining operations was successfully performed in the industrial environment. The overall surface finish and dimensional accuracy generated during the application of CBN-100 for machining within the industrial environment on specified mass produced shape showed a component acceptable tolerance range with good surface finish similar to that of the grinding operation

    The tool:workpiece interaction when machining welded hardfacing using PCBN tools

    Get PDF
    The work presented in this thesis is concerned with turning chromium carbide based hardfacings using PCBN tools. The chip formation and tool wear process was studied by quick-stop and machining tests. Cutting temperature was investigated by means of a remote thermocouple and the chip-tool interface temperature was simulated by an ANSYS Finite Element Analysis model. Cutting performance of PBN tools from different suppliers was compared in field cutting tests. Hardness, microstructure and the adhesion between the workpiece and cutting tool material were assessed.ln the turning process, saw-tooth chips were formed, with a short chip:tool contact length. Quick-stop tests revealed that the machining process involved fracture of large carbides ahead of the cutting edge in the primary zone. Temperature measurements showed that the cutting temperature for the hard facing material was lower than that with titanium alloy but much higher than that with machining mild steel. The cutting temperature predicted at the tool chip interface was in the range of 600-700°C when cutting hard facing.The tool wear process was found to involve three main progressive stages - from small scale edge chipping to large scale flaking and fracture. Four types of wear were identified: flank wear, microchipping, flaking of the rake face and delamination of the flank face. Abrasion appears to be the principal flank wear mechanism and it showed a minimum value for different speeds but increased with feedrate. The main mechanism for microchipping involved failure through the CBN particle boundaries. Flaking of the rake face occurred in the later stages and transgranular fracture was the main mechanism.In field tests, PCBN material from various sources achieved different cutting performance, which reflected the structural differences in the PBN materials. A dense structure with strong particle binding is essential for satisfactory performance of PCBN in this application

    Grey-Fuzzy Hybrid Optimization and Cascade Neural Network Modelling in Hard Turning of AISI D2 Steel

    Get PDF
    Nowadays hard turning is noticed to be the most dominating machining activity especially for difficult to cut metallic alloys. Attributes of dry hard turning are highly influenced by the amount of heat generation during cutting. Some major challenges are rapid tool wear, lower tool-life span, and poor surface finish but simultaneously generated heat is enough to provide thermal softening of hard work material and facilitates easier shear deformation thus easy cutting. Also, plenty of works reported the utilization of various cooling methods as well as coolants which successfully retard the intensity of cutting heat but this leads to additional cost as well as environmental and health issues. However, still, there is scope to select proper cutting tool materials, its geometry, and appropriate values of cutting parameters to get favorable machining outcomes under dry hard turning and avoid the cooling cost, environmental and health issue. Considering these challenges, current work utilizes PVD-coated (TiAlN) carbide insert in dry hard turning of AISI D2 steel. The multi-responses like tool-flank wear, chip morphology and chip reduction coefficient are considered. Further, to get the best combination of input cutting terms, grey-fuzzy hybrid optimization (Type I and Type II) is utilized considering the Gaussian membership function. Type II grey-fuzzy system attributed to 15 % less error (between GRG and GFG) compared to Type I. Hence, Type II grey-fuzzy system is utilized to get the optimal set of input terms. The optimal combination of input terms is found as t-1 (0.15 mm), s-4 (0.25 mm/rev) and is Vc-2 (100 m/min) which is comparable to the results obtained under spray impingement cooling using CVD tool in the literature. However, hard turning can be assessed under the dry condition with a PVD tool at the obtained optimal input condition for industrial uses. Further, six different types of cascade-forward-back propagation neural network modelling are accomplished. Among all models, CFBNN-4 model exhibited the best prediction results with a mean absolute error of 2.278% for flank wear (VBc) and 0.112% for the chip reduction coefficient (CRC). However, this model can be recommended for other engineering modelling problems

    A Comprehensive Review on AISI 4340 Hardened Steel: Emphasis on Industry Implemented Machining Settings, Implications, and Statistical Analysis

    Get PDF
    Turning of hardened AISI 4340 steel is regarded as one of the demanding challenges in machining sectors where precision tolerances are essential for automobile parts. The AISI 4340 steel is broadly utilized in forged steel automotive crankshafts systems, hydraulic forged and additional machine tool purposes because of their improved characteristics.  Moreover, one of the keys confronts in the machining of hard 4340 steel is the comparatively deprived machining behavior that reduces the functionality of the material and further leads to component  rejection at the final inspection stage. In addition, accelerated tool wear necessitates for repeated changing of cutting tool that results in higher machining and tooling costs. This comprehensive review aimed to present in-depth features on the development of machining performances using various cutting tools. This review focus is to provide a broad perceptive of the role of controllable variables during machining of hardened steel. This review analysis examines the response variables and its advantages on chip morphology and heat generation. The comprehensive overview of machining settings, key machinability indicators and statistical analysis for AISI 4340 steel has been presented. This overview will provide academic, industrial and scientific communities with benefits and shortcomings through improved conceptual understanding towards further research and development

    Preheating in end milling of AISI D2 hardened steel with coated carbide inserts

    Get PDF
    This study was conducted to investigate the effect of preheating through inductive heating mechanism in end milling of AISI D2 hardened steel (60-62 HRC) by using coated carbide tool inserts. Apart from preheating, two other machining parameters such as cutting speed and feed were varied while the depth of cut constant was kept constant. Tool wear phenomenon and machined surface finish were found to be significantly affected by preheating temperature and other two variables. End milling operation was performed on a Vertical Machining Centre (VMC). Preheating of the work material to a higher temperature range resulted in a noticeable reduction in tool wear rate leading to a longer tool life. In addition, improved surface finish was obtained with surface roughness values lower than 0.4 um, leaving a possibility of skipping the grinding and polishing operations for certain applications

    INVESTIGATION OF CHIP-FORM AND TOOL-WEAR IN TURNING OF HARDENED AF9628 ALLOY UNDER VARIOUS COOLING AND LUBRICATION CONDITIONS

    Get PDF
    Next generation defense and commercial applications for structural steels require new alloys that eliminate or reduce critical elements from their composition to lower cost and improve manufacturability, while maintaining or exceeding high strength and toughness requirements. A new alloy, denoted as AF9628, has recently been developed for this purpose and its manufacturing characteristics and the material response in component manufacturing must be fully understood. In the present study, hardened AF9628 alloy was turned with a coated carbide cutting tool under fixed cutting speed, feed rate, and depth of cut parameters. This work focuses on chip-form and tool-wear analysis to understand, for the first time with AF9628, these fundamental aspects of the turning process and their relationship to productivity and part quality. Current industry standard practice of flood-cooled machining for AF9628 was used during machining experiments. Dry, minimum quantity lubrication (MQL), and cryogenic machining were investigated as alternative cooling and lubrication conditions. High-speed imaging during AF9628 turning experiments provides a new insight into the chip formation process, while the use of optical microscopy and scanning white light interferometry allowed for further characterization of chip-form and tool-wear. Chip-form is favorable as short, arc-shaped chips with new tools under all of the tested cooling and lubrication conditions. As a result of rapid wear at the end of the tool-life in all of the experimental conditions, chip-form evolves to unfavorably long, snarled ribbon-like chips and the resultant cutting force increased by as much as 64% under flood-cooled conditions. Tool-wear types that were observed during experiments include a combination of nose wear, built-up edge, plastic deformation, and groove wear on the rake face. Due to the fixed cutting parameters and cutting tool selected for this study, which were designed for flood-cooled machining in a prior study, undesirable failure of the cutting tools under dry, MQL, and cryogenic machining occurred. Future work requires experimentation across a wider processing space, and with different cutting tools, to thoroughly evaluate alternative cooling and lubrication techniques for machining AF9628

    An Experimental Investigation in Hard Turning of AISI 4140 Steel

    Get PDF
    There is a growing demand for new and special alloys like nickel alloys, chrome- molybdenum alloys due to their special properties like high strength, light weight, and corrosive resistance. The present work is based on the experimental investigation of chrome-molybdenum alloy to study the effect of process parameters like cutting velocity, feed, and depth of cut on the output responses like force, surface roughness, tool wear. A full factorial design with 33 lay out with total 27 numbers of runs were carried out and optimum cutting condition for all three output responses was found out using grey relational analysis method. White layer formed in a hard turned component is mainly influenced by the abrasive wear of the tool. It has immense response on the performance of product so it is necessary to find out the white layer thickness. To investigate the machined surface properties like white layer and micro-hardness, the sliced machined surface was observed under scanning electron microscope (SEM) and micro-hardness tester respectively. It has been found that the as speed increases, the thickness of white layer increases due to increase in flank wear. Finally, a thermo-mechanical 2D model using finite element method available in Deform 2D TM has been prepared to investigate the output responses like force. Further, the model has been validated comparing the results of simulation with the measured results
    corecore