20,943 research outputs found

    The ITALK project : A developmental robotics approach to the study of individual, social, and linguistic learning

    Get PDF
    This is the peer reviewed version of the following article: Frank Broz et al, “The ITALK Project: A Developmental Robotics Approach to the Study of Individual, Social, and Linguistic Learning”, Topics in Cognitive Science, Vol 6(3): 534-544, June 2014, which has been published in final form at doi: http://dx.doi.org/10.1111/tops.12099 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." Copyright © 2014 Cognitive Science Society, Inc.This article presents results from a multidisciplinary research project on the integration and transfer of language knowledge into robots as an empirical paradigm for the study of language development in both humans and humanoid robots. Within the framework of human linguistic and cognitive development, we focus on how three central types of learning interact and co-develop: individual learning about one's own embodiment and the environment, social learning (learning from others), and learning of linguistic capability. Our primary concern is how these capabilities can scaffold each other's development in a continuous feedback cycle as their interactions yield increasingly sophisticated competencies in the agent's capacity to interact with others and manipulate its world. Experimental results are summarized in relation to milestones in human linguistic and cognitive development and show that the mutual scaffolding of social learning, individual learning, and linguistic capabilities creates the context, conditions, and requisites for learning in each domain. Challenges and insights identified as a result of this research program are discussed with regard to possible and actual contributions to cognitive science and language ontogeny. In conclusion, directions for future work are suggested that continue to develop this approach toward an integrated framework for understanding these mutually scaffolding processes as a basis for language development in humans and robots.Peer reviewe

    Cognitive Robotics

    Get PDF
    The current state of the art in cognitive robotics, covering the challenges of building AI-powered intelligent robots inspired by natural cognitive systems. A novel approach to building AI-powered intelligent robots takes inspiration from the way natural cognitive systems—in humans, animals, and biological systems—develop intelligence by exploiting the full power of interactions between body and brain, the physical and social environment in which they live, and phylogenetic, developmental, and learning dynamics. This volume reports on the current state of the art in cognitive robotics, offering the first comprehensive coverage of building robots inspired by natural cognitive systems. Contributors first provide a systematic definition of cognitive robotics and a history of developments in the field. They describe in detail five main approaches: developmental, neuro, evolutionary, swarm, and soft robotics. They go on to consider methodologies and concepts, treating topics that include commonly used cognitive robotics platforms and robot simulators, biomimetic skin as an example of a hardware-based approach, machine-learning methods, and cognitive architecture. Finally, they cover the behavioral and cognitive capabilities of a variety of models, experiments, and applications, looking at issues that range from intrinsic motivation and perception to robot consciousness. Cognitive Robotics is aimed at an interdisciplinary audience, balancing technical details and examples for the computational reader with theoretical and experimental findings for the empirical scientist

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the �experimenter�, and Mary, the �computational modeller�. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling

    A Developmental Neuro-Robotics Approach for Boosting the Recognition of Handwritten Digits

    Get PDF
    Developmental psychology and neuroimaging research identified a close link between numbers and fingers, which can boost the initial number knowledge in children. Recent evidence shows that a simulation of the children's embodied strategies can improve the machine intelligence too. This article explores the application of embodied strategies to convolutional neural network models in the context of developmental neurorobotics, where the training information is likely to be gradually acquired while operating rather than being abundant and fully available as the classical machine learning scenarios. The experimental analyses show that the proprioceptive information from the robot fingers can improve network accuracy in the recognition of handwritten Arabic digits when training examples and epochs are few. This result is comparable to brain imaging and longitudinal studies with young children. In conclusion, these findings also support the relevance of the embodiment in the case of artificial agents’ training and show a possible way for the humanization of the learning process, where the robotic body can express the internal processes of artificial intelligence making it more understandable for humans

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work
    corecore