168 research outputs found

    Robot Impedance Control and Passivity Analysis with Inner Torque and Velocity Feedback Loops

    Full text link
    Impedance control is a well-established technique to control interaction forces in robotics. However, real implementations of impedance control with an inner loop may suffer from several limitations. Although common practice in designing nested control systems is to maximize the bandwidth of the inner loop to improve tracking performance, it may not be the most suitable approach when a certain range of impedance parameters has to be rendered. In particular, it turns out that the viable range of stable stiffness and damping values can be strongly affected by the bandwidth of the inner control loops (e.g. a torque loop) as well as by the filtering and sampling frequency. This paper provides an extensive analysis on how these aspects influence the stability region of impedance parameters as well as the passivity of the system. This will be supported by both simulations and experimental data. Moreover, a methodology for designing joint impedance controllers based on an inner torque loop and a positive velocity feedback loop will be presented. The goal of the velocity feedback is to increase (given the constraints to preserve stability) the bandwidth of the torque loop without the need of a complex controller.Comment: 14 pages in Control Theory and Technology (2016

    HydroDog: A Quadruped Robot Actuated by Soft Fluidic Muscles

    Get PDF
    This report presents the very first effort aimed to develop a legged terrestrial robot actuated by Hydro Muscles, which are elastic tubes actuated by fluid, constrained by fabric that extend and contract emulating life-like performance of biological muscles. The team designed and manufactured a 30-pound quadruped “dog” using versatile aluminum extrusions and minimally machined components. The team tested and observed a variety of bounding gaits that resulted from different skeletal/muscular geometries and actuation times. These tests yielded varying jump heights and robot forward velocities. Future projects should extensively research optimal leg kinematics to maximize the mechanical power the muscles apply on the robot

    HydroDog: A Quadruped Robot Actuated by Soft, Fluidic Muscles

    Get PDF
    This report presents the very first effort aimed to develop a legged terrestrial robot actuated by Hydro Muscles, which are elastic tubes actuated by fluid, constrained by fabric that extend and contract emulating life-like performance of biological muscles. The team designed and manufactured a 30-pound quadruped “dog” using versatile aluminum extrusions and minimally machined components. The team tested and observed a variety of bounding gaits that resulted from different skeletal/muscular geometries and actuation times. These tests yielded varying jump heights and robot forward velocities. Future projects should extensively research optimal leg kinematics to maximize the mechanical power the muscles apply on the robot

    HydroDog: A Quadruped Robot Actuated by Soft Fluidic Muscles

    Get PDF
    This report presents the very first effort aimed to develop a legged terrestrial robot actuated by Hydro Muscles, which are elastic tubes actuated by fluid, constrained by fabric that extend and contract emulating life-like performance of biological muscles. The team designed and manufactured a 30-pound quadruped “dog” using versatile aluminum extrusions and minimally machined components. The team tested and observed a variety of bounding gaits that resulted from different skeletal/muscular geometries and actuation times. These tests yielded varying jump heights and robot forward velocities. Future projects should extensively research optimal leg kinematics to maximize the mechanical power the muscles apply on the robot

    Master of Science

    Get PDF
    thesisThis thesis describes the design, modeling, and gait control of a new bounding/rolling quadruped robot called the roll-U-ped. The robot has four uniquely-designed compliant legs for bounding gait locomotion, and the legs can reconfigure for passive and powered rolling. One of the main advantages of such a design is versatility as the robot can efficiently and quickly traverse over flat and downhill terrain via rolling and then transition to running for traveling over more complex terrain with a bounding gait. The contributions of this work are: (1) a detailed description of the robot design, (2) modeling and simulation of bounding motion, (3) investigation of bounding gait effectiveness using sinusoidal control inputs and inputs obtained from machine learning, and (4) prototype development and performance evaluation. Specifically, the prototype robot utilizes 3D-printed compliant legs for dynamic running and rolling, and the dual-purpose leg design minimizes the number of joints. Two functional prototypes are developed with on-board embedded electronics and a single-board computer running the Robot Operating System for motion control and evaluation. Simulations of the bounding gait locomotion are shown and compared to the performance of the prototype designs. Additionally, the robot's running motion is investigated for two types of inputs: a sinusoidal trajectory and a learned gait using the Q-learning technique, where results demonstrate effective running and rolling behavior. For example, using sinusoidal inputs, the robot can run with a bounding gait over a flat and stiff sandpaper-like surface at speeds of up to 0.21 m/s. On the other hand, over a flat and tacky-cushioned surface, the speed is measured at 0.14 m/s. Simulation results for Q-learning show gait speeds of 0.22 m/s for the tacky-cushioned surface, where experiments on the physical system yielded a gait speed of 0.15 m/s. For powered rolling, the robot was able to reach a speed of 0.53 m/s over a flat-smooth surface. The results demonstrate proof-of-concept of the design and feasibility of using machine learning to determine inputs for effective running locomotion. Finally, possible future improvements to the design, modeling, and motion control of the robot are discussed

    Agile legged robot locomotion

    Get PDF

    A Novel Lockable Spring-loaded Prismatic Spine to Support Agile Quadrupedal Locomotion

    Full text link
    This paper introduces a way to systematically investigate the effect of compliant prismatic spines in quadrupedal robot locomotion. We develop a novel spring-loaded lockable spine module, together with a new Spinal Compliance-Integrated Quadruped (SCIQ) platform for both empirical and numerical research. Individual spine tests reveal beneficial spinal characteristics like a degressive spring, and validate the efficacy of a proposed compact locking/unlocking mechanism for the spine. Benchmark vertical jumping and landing tests with our robot show comparable jumping performance between the rigid and compliant spines. An observed advantage of the compliant spine module is that it can alleviate more challenging landing conditions by absorbing impact energy and dissipating the remainder via feet slipping through much in cat-like stretching fashion.Comment: To appear in 2023 IEEE IRO

    Optimal Design Methods for Increasing Power Performance of Multiactuator Robotic Limbs

    Get PDF
    abstract: In order for assistive mobile robots to operate in the same environment as humans, they must be able to navigate the same obstacles as humans do. Many elements are required to do this: a powerful controller which can understand the obstacle, and power-dense actuators which will be able to achieve the necessary limb accelerations and output energies. Rapid growth in information technology has made complex controllers, and the devices which run them considerably light and cheap. The energy density of batteries, motors, and engines has not grown nearly as fast. This is problematic because biological systems are more agile, and more efficient than robotic systems. This dissertation introduces design methods which may be used optimize a multiactuator robotic limb's natural dynamics in an effort to reduce energy waste. These energy savings decrease the robot's cost of transport, and the weight of the required fuel storage system. To achieve this, an optimal design method, which allows the specialization of robot geometry, is introduced. In addition to optimal geometry design, a gearing optimization is presented which selects a gear ratio which minimizes the electrical power at the motor while considering the constraints of the motor. Furthermore, an efficient algorithm for the optimization of parallel stiffness elements in the robot is introduced. In addition to the optimal design tools introduced, the KiTy SP robotic limb structure is also presented. Which is a novel hybrid parallel-serial actuation method. This novel leg structure has many desirable attributes such as: three dimensional end-effector positioning, low mobile mass, compact form-factor, and a large workspace. We also show that the KiTy SP structure outperforms the classical, biologically-inspired serial limb structure.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    Design, modeling, and control of an autonomous legged-wheeled hybrid robotic vehicle with non-rigid joints

    Get PDF
    This paper presents a legged-wheeled hybrid robotic vehicle that uses a combination of rigid and non-rigid joints, allowing it to be more impact-tolerant. The robot has four legs, each one with three degrees of freedom. Each leg has two non-rigid rotational joints with completely passive components for damping and accumulation of kinetic energy, one rigid rotational joint, and a driving wheel. Each leg uses three independent DC motors—one for each joint, as well as a fourth one for driving the wheel. The four legs have the same position configuration, except for the upper hip joint. The vehicle was designed to be modular, low-cost, and its parts to be interchangeable. Beyond this, the vehicle has multiple operation modes, including a low-power mode. Across this article, the design, modeling, and control stages are presented, as well as the communication strategy. A prototype platform was built to serve as a test bed, which is described throughout the article. The mechanical design and applied hardware for each leg have been improved, and these changes are described. The mechanical and hardware structure of the complete robot is also presented, as well as the software and communication approaches. Moreover, a realistic simulation is introduced, along with the obtained results.info:eu-repo/semantics/publishedVersio
    • …
    corecore