285 research outputs found

    Fundamental issues, technology development and challenges of boiling heat transfer, critical heat flux and two-phase flow phenomena with nanofluids

    Get PDF
    This paper presents a comprehensive and critical review of studies on nucleate pool boiling heat transfer, flow boiling heat transfer, critical heat flux (CHF) and two-phase flow phenomena with nanofluids. First, general analysis of the available studies on the relevant topics is presented. Then, studies of physical properties of nanofluids are discussed. Next, boiling heat transfer, CHF phenomena and the relevant physical mechanisms are explored. Finally, future research needs have been identified according to the review and analysis. As the first priority, the physical properties of nanofluids have a significant effect on the boiling and CHF characteristics but the lack of the accurate knowledge of the physical properties has greatly limited the studies. Fundamentals of boiling heat transfer and CHF phenomena with Nanofluids have not yet been well understood. Flow regimes are important in understanding the boiling and CHF phenomena and should be focused on. Two phase pressure drops of nanofluids should also be studies. Furthermore, economic evaluation of the enhancement technology with nanofluid should be considered for the new heat transfer enhancement technology with nanofluids. Finally, applied research should be targeted to achieve an enabling practical heat transfer and CHF enhancement technology for engineering application with nanofluids

    Development of nanowire structures on 2d and 3d substrates for pool boiling heat transfer enhancement

    Get PDF
    Boiling is a common mechanism for liquid-vapor phase transition and is widely exploited in power generation, refrigeration and many other systems. The efficacy of boiling heat transfer is characterized by two parameters: (a) heat transfer coefficient (HTC) or the thermal conductance; (b) the critical heat flux (CHF). Increasing the CHF and the HTC has significant impacts on system-level energy efficiency, safety and cost. As the surface modification at nano-scale has proven to be an effective approach to improve pool boiling heat transfer, the enhancement due to combination of nanomaterials with micro-scale structures on boiling heat transfer is an area of current interest. In this study, metallic- and semiconductor- material based nanowire structures were fabricated and studied for boiling enhancement. A new technique is developed to directly grow Cu nanowire (CuNW) on Si substrate with electro-chemical deposition, and to produce height-controlled hydrophilic nanowired surfaces. Using a two-step electroless etching process, silicon nanowire (SiNW) have been selectively fabricated on top, bottom, and sidewall surfaces of silicon microchannels. An array of the SiNW coated microchannels functioned as a heat sink and was investigated for its pool boiling performance with water. This microchannel heat sink yielded superior boiling performance compared to a sample substrate with only microchannels and a plain substrate with nanowires. The enhancement was associated with the area covered by SiNWs. The sidewalls with SiNWs greatly affected bubble dynamics, resulting in a significant performance enhancement. The maximum heat flux of the microchannel with SiNW on all surfaces was improved by 150% over the microchannel-only heat sink and by more than 400% over a plain silicon substrate. These results provide a viable solution to meet the demands for dissipating a high heat transfer rate in a compact space, with additional insight gained into the boiling mechanism for the microchannel heat sinks with nanostructures

    Overview of Recent Trends in Microchannels for Heat Transfer and Thermal Management Applications

    Get PDF
    Distinctive recent research and experimental trends in microchannels for heat transfer and thermal management applications are investigated via a novel framework. The qualitative literature analysis was performed from four perspectives: materials, enhanced flow control, design, and sustainability (MEDS). The findings revealed that enhanced microchannel (MC) heat transfer performance (HTP) could be achieved by adding asymmetrical barriers, pin-fins, non-conventional geometries, mixed-wettability/biphilic surfaces, hybrid/silver nanofluids, and adopting innovative experimental and analysis methods. Additionally, researchers urged to focus on new microchannel designs and flow boiling/phase change-based experiments to understand the physics and different effects caused by various parameters. Furthermore, the qualitative analyses were transformed into quantitative results from the evaluated described methods and datasets, followed by a critical discussion of the findings. Finally, this article points out a set of promising future investigations and draws conclusions about current state-of-the-art. It is observed that, despite the decent progress made so far, microchannel-based applications still rely on traditional rectangular shapes, water-based working fluids, and numerical methods. Therefore, the role and focus on Industry 4.0 technologies to drive further innovations and sustainability in microchannel technologies are still in the early stages of adoption; this arguably acts as a barrier that prevents meeting current thermal and heat transfer needs

    Thermal Transport in Micro- and Nanoscale Systems

    Get PDF
    Small-scale (micro-/nanoscale) heat transfer has broad and exciting range of applications. Heat transfer at small scale quite naturally is influenced – sometimes dramatically – with high surface area-to-volume ratios. This in effect means that heat transfer in small-scale devices and systems is influenced by surface treatment and surface morphology. Importantly, interfacial dynamic effects are at least non-negligible, and there is a strong potential to engineer the performance of such devices using the progress in micro- and nanomanufacturing technologies. With this motivation, the emphasis here is on heat conduction and convection. The chapter starts with a broad introduction to Boltzmann transport equation which captures the physics of small-scale heat transport, while also outlining the differences between small-scale transport and classical macroscale heat transport. Among applications, examples are thermoelectric and thermal interface materials where micro- and nanofabrication have led to impressive figure of merits and thermal management performance. Basic of phonon transport and its manipulation through nanostructuring materials are discussed in detail. Small-scale single-phase convection and the crucial role it has played in developing the thermal management solutions for the next generation of electronics and energy-harvesting devices are discussed as the next topic. Features of microcooling platforms and physics of optimized thermal transport using microchannel manifold heat sinks are discussed in detail along with a discussion of how such systems also facilitate use of low-grade, waste heat from data centers and photovoltaic modules. Phase change process and their control using surface micro-/nanostructure are discussed next. Among the feature considered, the first are microscale heat pipes where capillary effects play an important role. Next the role of nanostructures in controlling nucleation and mobility of the discrete phase in two-phase processes, such as boiling, condensation, and icing is explained in great detail. Special emphasis is placed on the limitations of current surface and device manufacture technologies while also outlining the potential ways to overcome them. Lastly, the chapter is concluded with a summary and perspective on future trends and, more importantly, the opportunities for new research and applications in this exciting field

    Numerical and experimental studies on multi-phase flows in microchannels

    Get PDF
    Microchannels are considered as one of the key elements in thermal management of microsystems. Despite the advantages of the microchannels, understanding of the fundamental hydrodynamic and thermal transport mechanisms in multiphase flows in them is far from satisfactory. Therefore, in this thesis using numerical and experimental approaches, it is aimed to focus on the understanding of phase change phenomena in order to be able to make use of them. In the first study, convective heat transfer of alumina/water nanofluids in a microtube is presented using a numerical approach. The effects of nano-particle size and concentration on convective heat transfer are studied. Next, the effect of MWCNTs (multi-wall carbon nanotubes) on convective heat transfer was experimentally studied. The effect of MWCNT concentration on thermal performance is presented. In the second study, high mass flux subcooled flow boiling of water in microtubes is investigated. Both experimental and numerical approaches are implemented to investigate high mass flux flow boiling in micro scale. Heat transfer coefficients are obtained as a function of mass flow rate, heat flux, and vapor quality. In the third study, the effects of surface wettability and roughness on flow boiling in a rectangular microchannel are presented. Micro and nano-structured and nano-coated surfaces are integrated into the channel to investigate the effect of surface characteristics on flow map, bubble formation and release and boiling heat transfer

    Micro/Nano-engineered techniques for enhanced pool boiling heat transfer

    Get PDF
    Environmental aspects such as water treatment as well as military applications and thermal management emphasize on the need for next generation cooling technologies based on boiling heat transfer. Micro/nano enhanced surfaces have shown a great potential for the performance enhancement in the systems involving boiling phenomena. The lack of fully understanding the mechanisms responsible for the enhancement on these surfaces and scalability of these technologies for large and complex geometries over the wide range of materials are two main issues. The goals of this dissertation are to provide an understanding about the fundamentals of pool boiling heat transfer (BHT) and critical heat flux (CHF) mechanisms on engineered surfaces, to develop new techniques for surface alteration for BHT and CHF enhancement, and to propose novel, facile and scalable surfaces modification techniques for related industries. Surfaces with artificial cavities, surfaces with different wettability, and surfaces with different porosities were fabricated and tested to shed light into the fundamentals of surface/boiling interaction. In addition, 3-D foam-liked graphene and crenarchaeon Sulfolobus solfataricus P2 bio-coating surface modification techniques were proposed for BHT and CHF enhancement. For artificial cavities it was shown that CHF occurrence on the hydrophilic surfaces is mainly due to hydrodynamic instability, while dry-out is the dominant CHF mechanism on the hydrophobic surfaces. The obtained results imply that although the increase in hole diameter enhances CHF for all the fabricated samples, the effect of pitch size depends on surface wettability such that CHF increases and decreases with pitch size on the hydrophobic and hydrophilic surfaces, respectively. For biphilic surfaces, a novel and facile process flow for the fabrication of biphilic surfaces was proposed. It was shown that boiling heat transfer coefficient and CHF increased with A*=AHydrophobic/ATotal up to 38.46%. Surfaces with A*>38.46% demonstrated a decreasing trend in CHF and heat transfer coefficient enhancement, which is caused by earlier interaction of nucleated bubbles, thereby triggering the generation of vapor blanket at lower wall superheat temperatures. This ratio could serve as a valuable design guideline in the design and development of new generation thermal systems. Pool boiling on pHEMA coated surfaces with thicknesses of 50, 100 and 200 nm were used to study the effect of surface porosity and inclination angle on heat transfer and bubble departure process. According to obtained results, combination of the effects of the interaction between active nucleation sites, the increase in bubble generation frequency, and the increase in bubble interactions were presented as the reasons behind the enhancement in heat transfer on coated surfaces. It was observed that under an optimum condition for the inclination angle, the porous coating provides a suitable escape path for vapor phase, which results in space to be filled by the liquid phase thereby enabling liquid replenishment. Pool boiling experiments conducted on 3D foam-like graphene coated surfaces to show the effect of graphene coating thickness on the pool boiling heat transfer performance. According to the obtained results, 3D structure of the coating has a significant effect on pool boiling heat transfer mechanism. Factors such as pore shape and mechanical resonance of the 3D structure could be possible reasons for bubbling behavior in developed nucleate boiling. Furthermore it was found that there exists an optimum thickness of 3D graphene coatings, where the maximum heat transfer coefficient were achieved. This is mainly due to the trapped bubbles inside the porous medium, which affects the bubble dynamics involving bubble departure diameter and frequency. A novel coating, crenarchaeon Sulfolobus solfataricus P2 biocoatings, were proposed for the performance enhancement of heating and cooling devices, thermofluidic systems, batteries, and micro- and nanofluidic devices. These biocoatings have the potential for addressing high heat removal requirements in many applications involving heat and fluid flows. Pool boiling experiments were performed on biocoated surfaces with thicknesses of 1 and 2μm. The obtained results indicated that biocoated surfaces enhance boiling heat transfer by providing numerous nucleation site densities and by increasing bubble interaction on the superheated surface. Interconnected channels inside the porous coating, and capillary pumping enhance liquid transportation and reduce the liquid-vapor counter flow resistance, thereby delating CHF condition. There is a strong potential economic value of research performed in the framework of this thesis. Refrigeration, automotive/aerospace engineering, thermal management companies will benefit from the commercial development of the performed researc

    Advances in Heat and Mass Transfer in Micro/Nano Systems

    Get PDF
    The miniaturization of components in mechanical and electronic equipment has been the driving force for the fast development of micro/nanosystems. Heat and mass transfer are crucial processes in such systems, and they have attracted great interest in recent years. Tremendous effort, in terms of theoretical analyses, experimental measurements, numerical simulation, and practical applications, has been devoted to improve our understanding of complex heat and mass transfer processes and behaviors in such micro/nanosystems. This Special Issue is dedicated to showcasing recent advances in heat and mass transfer in micro- and nanosystems, with particular focus on the development of new models and theories, the employment of new experimental techniques, the adoption of new computational methods, and the design of novel micro/nanodevices. Thirteen articles have been published after peer-review evaluations, and these articles cover a wide spectrum of active research in the frontiers of micro/nanosystems

    Adipic Acid Sonocrystallization in Continuous Flow Microchannels

    Get PDF
    Crystallization is widely employed in the manufacture of pharmaceuticals during the intermediate and final stages of purification and separation. The process defines drug chemical purity and physical properties: crystal morphology, size distribution, habit and degree of perfection. Particulate pharmaceuticals are typically manufactured in conventional batch stirred tank crystallizers that are still inadequate with regard to process controllability and reproducibility of the final crystalline product. Variations in crystal characteristics are responsible for a wide range of pharmaceutical formulation problems, related for instance to bioavailability and the chemical and physical stability of drugs in their final dosage forms. This thesis explores the design of a novel crystallization approach which combines in an integrated unit continuous flow, microreactor technology, and ultrasound engineering. By exploiting the various benefits deriving from each technology, the thesis focuses on the experimental characterization of two different nucleation systems: a droplet-based system and a single-phase system. In the former, channel fouling is avoided using a carrier fluid to segment the crystallizing solution in droplets, thus avoiding the contact with the walls. In the latter channel blockage is prevented using larger channel geometries and employing higher flow rates. The flexibility of the developed setup also allows performing stochastic nucleation studies to estimate the nucleation kinetics under silent and sonicated conditions. The experiments reveal that very high nucleation rates, small crystal sizes, narrow size distributions and high crystal yields can be obtained with both setups when the crystallizing solution is exposed to high pressure field as compared to silent condition. It is concluded that transient cavitation of bubbles and its consequences are a significant mechanism for enhancing nucleation of crystals among several proposed in the literature. A preliminary study towards the development and design of a growth stage is finally performed. Flow pulsation is identified as a potential method to enhance radial mixing and narrow residence time distribution therefore achieving optimal conditions for uniform crystal growth. The results suggest that increasing values of Strouhal number as well as amplitude ratio improve axial dispersion. Helically coiled tubes are identified as potential structures to further improve fluid dynamic dispersion
    corecore